建设项目环境影响报告表

(污染影响类) (公示版)

项目名称: 3100 吨挤压生产线 建设单位 (盖章): 重庆南涪铝业有限公司 编制日期: 2024 年 12 月

中华人民共和国生态环境部制

一、建设项目基本情况

建设项目		文 公日至于旧户			
名称	3100 吨挤压生产线				
项目代码	2312-500102-04-02-832442				
建设单位	+/ steate	ボスナム	1.2 6 5 0 shahahah 1.2		
联系人	彭**	联系方式	13658****43		
建设地点	重庆市涪	陵区龙桥街道	龙港大道 466 号		
地理坐标	107° 13′	28.192", 29	9° 40′ 38.364″		
国民经济行业类别	铝压延加工 (C3252)	建设项目 行业类别	二十九、有色金属冶炼和压 延加工业 32—65 有色金属		
11 77.70	(03232)	11 -11-70/11	压延加工 325		
	□新建(迁建)		☑首次申报项目		
建设性质	□改建	建设项目	□不予批准后再次申报项目		
, , , , , , , , , , , , , , , , , , , ,	☑扩建	申报情形	□超五年重新审核项目		
	□技术改造		□重大变动重新报批项目		
项目审批 (核准/备 案)部门 (选填)	重庆市涪陵区发展和 改革委员会	项目审批 (核准/备 案)文号(选 填)	2312-500102-04-02-832442		
总投资(万元)	2000	环保投资 (万元)	5		
环保投资 占比(%)	0.25	施工工期	9 个月		
是否开工 建设	☑否□是	用地 (用海) 面积 (m²)	不新增占地		
	1.1 专项评价设置	情况			
	对照《建设项目环	境影响报告表	编制技术指南 (污染影响类)》		
	(试行)中"表1专项评价设置原则表",拟建项目土壤、声环境				
	不开展专项评价,同时,拟建项目厂界外 500m 范围内不涉及地下				
专项评价	水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源,因				
设置情况		. , , , , ,	地表水、环境风险、生态、海		
	洋是否开展专项评价情 	光			

专项评	7 III 1 (17)	价设置原则对照表	
价类别	设置原则	项目情况	是设
大气	排放废气含有毒有害污染物 ¹ 、二噁英、苯并[a] 芘、氰化物、氯气且厂界外 500 米范围内有环境空气保护目标 ² 的建设项目	拟建项目运营期废气污染物 主要为颗粒物、SO ₂ 、NOx等, 不涉及有毒有害污染物 ¹ 、二 噁英、苯并[a]芘、氰化物、 氯气,故无需开展大气专项评 价	
地表水	新增工业废水直排建设项目(槽罐车外送污水处理厂的除外);新增废水直排的污水集中处理厂	拟建项目运营期外排废水主要为生产废水、食堂废水及生活污水,生产废水经厂区现有污水处理站处理后、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理后,经园区污水管网进入龙桥工业园区污水处理厂处理达标后排放。废水排放方式为间接排放,故无需开展地表水专项评价	7
环境风 险	有毒有害和易燃易爆危 险物质存储量超过临界 量 ³ 的建设项目	拟建项目涉及的有毒有害和 易燃易爆危险物质存储量均 未超过临界量,故无需开展环 境风险专项评价	7
生态	取水口下游 500 米范围 内有重要水生生物的自 然产卵场、索饵场、越 冬场和洄游通道的新增 河道取水的污染类建设 项目	拟建项目不属于新增河道取 水的污染类建设项目,故无需 开展生态专项评价	7
海洋	直接向海排放污染物的海洋工程建设项目	拟建项目不属于向海排放污 染物的海洋工程建设项目,故 无需开展海洋专项评价	

附录 B、附录 C。

规划情况	《重庆涪陵工业园区龙桥组团规划》(2015~2030年)
	文件名称:《重庆涪陵工业园区龙桥组团规划环境影响报告书》
规划环境	召集审查机关: 原重庆市环境保护局
影响评价	审批文件名称及文号:《重庆市环境保护局关于重庆涪陵工业园区
情况	龙桥组团规划环境影响报告书审查意见的函》(渝环函[2017]593号)
	审查时间: 2017年8月21日
	1.2 规划及规划环境影响评价符合性分析
	1.2.1 规划符合性分析
	重庆涪陵工业园区龙桥组团规划范围包括南岸浦、石塔、苏家
	湾、新石片区等地的部分区域,用地面积共 15.2622km ² 。
	规划定位: 以原油加工及石油品制造、化纤纺织、临港加工贸
	易、物流、装备制造及电子信息等产业作为园区产业发展方向。
	规划布局:规划从空间结构上形成"一轴四片区一园"。"一轴"
	为园区产业发展轴,由国道 348(原茶涪路)串联各大片区形成的
	产业发展轴。"四片区"包括南岸浦片区、苏家湾片区、石塔片区、
	新石片区。"一园"为太极退城入园,布置太极集团中成药制造区
规划及规	域。
划环境影	根据规划内容,石塔片区以钢龙渝东工贸商城、庚业新材料科
响评价符 合性分析	技有限公司再生塑料加工等项目为基础,主要发展临港加工贸易产
	业,沿茶涪路应布置大气、噪声污染较轻的贸易加工企业,且不宜
	布置危化品仓储企业。
	拟建项目位于重庆市涪陵区龙桥街道龙港大道 466 号(重庆涪
	陵工业园区龙桥组团石塔片区),用地性质属于工业用地,符合用
	地规划,重庆南涪铝业有限公司现有工程生产的产品主要为喷塑铝
	型材、高端木纹家装用装饰铝型材、铝型材坯料等,本次为扩建项
	目,仅增加铝合金型材产能,属于有色金属压延加工,不属于危化
	品仓储企业,生产过程中采用天然气、电等清洁能源,对周边环境
	影响较小,不属于禁止及限制引入项目,不与园区产业准入冲突,
	符合重庆涪陵工业园区龙桥组团产业定位及用地布局要求。

1.2.2 与《重庆涪陵工业园区龙桥组团规划环境影响报告书》及 其审查意见(渝环函[2017]593 号)符合性分析

(1)与《重庆涪陵工业园区龙桥组团规划环境影响报告书》 符合性分析

根据《重庆涪陵工业园区龙桥组团规划环境影响报告书》:

①规划范围

规划范围为南岸浦、石塔、苏家湾、新石片区等地的部分区域, 用地面积共 15.2622km²。

②规划期限

规划期限为 2015 年至 2020 年。

③总体目标

构建城市、港口、园区与山水环境的良好关系,通过实施大项目、大集群战略,培育石化、化纤核心产业集群,落实产业功能布局,建成工业集群优势明显、生产力布局合理、生态环境优良,港口、产业区、物流网、服务区有机融合的产业集聚区。

④规划产业布局

石塔片区以钢龙渝东工贸商城、庚业新材料科技有限公司再生 塑料加工等项目为基础,主要发展临港加工贸易产业。

园区禁止引入不符合各标准分区产业定位的项目,入区项目必须符合国家产业政策与规划区产业发展规划。优先引进属国家《产业结构调整指导目录》鼓励类、有利于促进区域资源深度转化和综合利用、有利于延伸产业链、促进规划区主导产业规模配置和壮大的产业项目。

拟建项目生产的产品为铝合金型材,属于有色金属压延加工,不属于禁止及限制引入项目,不与园区产业准入冲突,符合重庆涪 陵工业园区龙桥组团产业布局要求。

(2)与《重庆涪陵工业园区龙桥组团规划环境影响报告书》 审查意见符合性分析

根据《重庆市环境保护局关于重庆涪陵工业园区龙桥组团规划

环境影响报告书审查意见的函》(渝环函[2017]593 号), 拟建项目
与规划环评审查意见主要内容的符合性分析见表 1.2-1。

		表 1.2-1 项目与规划环评审查意见主要内线	容的符合性分析	
	类别	规划实施的主要意见	拟建项目情况	符合性
	(一)严 格产业 定位	规划实施中需严格执行规划区确定的主导产业定位,禁止引入不符合"三线一单"和环境准入负面清单要求的行业和项目	拟建项目符合园区产业定位及"三线一单"的管理要求,不属于环境准入负面清单要求的行业和项目	符合
其他	(二)严 格环境 准入,合 理控制 产业规 模	入驻龙桥组团的工业项目应符合《重庆市工业项目环境准入规定(修订)》和有关行业准入条件,严格执行环境影响评价和环保"三同时"制度;优先引进属国家《产业结构调整指导目录》鼓励类、有利于促进区域资源深度转化和综合利用、有利于延伸产业链、促进规划区主导产业规模配置和壮大的产业项目;严格控制中化涪陵化工搬迁项目和合成氨项目的规模,不得擅自扩大规模	拟建项目符合重庆市现有的产业准入和有关行业准入条件,项目正在办理环评,日后建设过程将严格执行环保"三同时"制度	符合
符合性分析	(三)优 化产业 布局	南岸浦片区内规划有集中居住区,且北侧及长江对岸为涪陵新城区,其规划的化纤纺织功能定位中应以 PTA 为原料向下发展为主,重点发展纺织、制造产业;龙桥组团的原油加工及石油品制造产业应围绕龙海石化重油项目产品的下游深加工,以及依托中化涪陵化工厂发展磷化工;南岸浦片区应在邻规划居住区的工业地块布置为纺织、织造等污染相对较轻的产业;PET等大气污染较大的项目应布置在南岸浦片区的东侧,远离龙桥街道居住区;控制龙桥街道城镇、石沱场镇和酒井场镇人口规模,原则上不再新建集中居住区;石塔片区沿茶涪路应布置大气、噪声污染较轻的贸易加工企业,且不宜布置危化品仓储企业;新石片区邻石沱场镇、新妙场镇应设置不少于30m的绿化隔离带,距离长江1km范围的工业地块禁止新建化工企业,新石片区原油加工及石油品制造区不宜再引入重化工企业;邻新妙场镇规划的工业地块应布局污染较小、环境风险较小的装备制造企业及电子信息企业;苏家湾片区和新石片区新拓展区域用地距离长江较近,应将工业用地调整为仓储物流用地,禁止引入涉及危险化学品及与用地性质不符的项目	拟建项目位于重庆涪陵工业园区龙桥组团石塔 片区,生产的产品为铝合金型材,属于有色金 属压延加工,不属于危化品仓储企业,项目排 放的大气污染物主要为天然气燃烧废气,对周 边环境影响小;在采取合理布局、隔声、减振 等噪声控制措施后,厂界及声环境敏感目标处 噪声满足相应标准限值要求,能达标排放,且 不属于高污染、高风险项目,符合园区产业布 局要求	符合

		_	
气气	园区实行集中供热,除蓬威石化 PTA 项目通过蓬威石化供热中心 海石化重油深加工项目自建的 3 台 35t/h 水煤浆-天然气两用锅炉 园区其余企业项目依托园区龙桥电厂热电联产项目进行集中供热 禁止企业自建燃煤锅炉进行供热;加快龙桥电厂热电联产项目供 敷设进度,采用先进的生产工艺,提高单位资源环境的产出强度 艺废气的处理,提高挥发性有机物处理效率;加强有毒废气污染 染控制	供热外, 原则上 热管网的 热管网的 加强工 探手不设置锅炉, 不涉及有机废气、有毒	子合
表	从源头上减少水污染物的产生,提高水的循环使用率;采取"雨污污分流、分质处理"的排水体制,严禁将污水排入雨水管网,间或生产设施废水排放口达标的废水未处理达标前与其它废水混内企业废水经过预处理达到园区污水处理厂接管标准后,排入园理厂处理达标排入地表水体;加快酒井工业污水处理厂、石沱工理厂的建设,园区污水厂未建成投运,不得批准项目入园;鉴于威石化有限责任公司 PTA 项目环保部环评批文批准废水 COD 排60mg/L,因此龙桥工业园区污水处理厂废水 COD 排放标准应按照进行控制	正禁在车 目运营期外排废水主要为生产废水、食堂废水 及生活污水,冷却塔及淬火冷却喷雾水循环使 用,不外排,其余生产废水(主要为挤压模具 减煮及清洗废水)经厂区现有污水处理站处理 后、食堂废水经隔油池隔油处理后与生活污水 一并进入厂区生化池处理后,经园区污水管网	子 合
下	(X)地 采取源头控制为主的原则,落实分区、分级防渗措施,防止规划 水污 域地下水环境的污染;定期开展园区地下水跟踪监测评价工作, 结论,完善相应的地下水污染防控措施	将生产车间(挤压机等使用矿物油的区域)、模 实施对区 具碱煮及清洗区域、污水处理站(包括废水收	· F合

(七)固 体废物 污染防 治	采取建立分类收集系统、大力发展循环经济、严格危险废物管理;园区不配套建设危险废物集中处置场,各入驻企业产生的危险废物在厂区按环保要求设置暂存场,然后委托有资质的单位进行处理;涪陵化工搬迁之后的新建磷石膏渣场(园区外)选址应远离石沱场镇等居住集中区;加强磷石膏的综合利用,利用率达到40%以上;涪陵化工原厂搬迁之后,应对原场地开展场地风险评估,并对场地进行修复之后再进行开发建设	拟建项目产生的危险废物进行分类收集后暂存 于危险废物贮存点,定期交由有资质的单位进 行处置	符合
(八)清 洁生产 水平	围绕现有 PTA、龙海石化、中化涪陵化工企业产品,引入下游高附加值和深加工企业构建循环经济和产业链延伸;新建、改扩建项目清洁生产水平不得低于国内先进水平;鼓励新入驻企业增加中水回用力度,可建设中水回用管网,将处理后的污水回用于绿化、道路浇洒等	拟建项目采用先进的生产工艺和设备,从源头 上减少污染物排放,其清洁生产水平可达到国 内先进水平	符合
(九)环 境风险 管控	建立园区环境风险防范体系,完善环境风险防范措施和应急预案,防止发生环境污染事故;南岸浦片区、石塔片区、新石片区应尽快完善三级环境风险防范措施(即企业级——园区级——流域级);江河沿岸严格控制危化品仓储设施建设,严格按规范运输化工原料及产品,在企业、规划区和河道应建设完善的拦截设施,防止事故状态下废水废液进入长江	本次评价提出了相应的风险防范措施,企业风险可防可控	符合
(十)加 强环境 管理	加强日常环境监管,建设项目应严格执行环境影响评价和环保"三同时"制度;规划实施后,应适时开展环境影响的跟踪评价	拟建项目处于环境影响评价阶段, 日后建设过程将严格执行环保"三同时"制度	符合

综上所述,拟建项目符合《重庆涪陵工业园区龙桥组团规划环境影响报告书》及其审查意见函的相关要求。

1.3 其他符合性分析

1.3.1 与"三线一单"的符合性分析

根据重庆市生态环境局关于印发《重庆市"三线一单"生态环境分区管控调整方案(2023年)》的通知(渝环规[2024]2号)、《重庆市涪陵区人民政府关于印发重庆市涪陵区"三线一单"生态环境分区管控调整方案(2023年)的通知》(涪陵府发[2024]11号),涪陵区全区国土空间按优先保护、重点管控、一般管控三大类划分为32个环境管控单元。其中,优先保护单元15个,面积占比18.2%;重点管控单元10个,面积占比29.0%;一般管控单元7个,面积占比52.8%。

拟建项目不涉及生态保护红线;根据重庆市"三线一单"智检服务平台中查询获取的《三线一单检测分析报告》(见附件),拟建项目所在地为重点管控单元,环境管控单元名称:涪陵区工业城镇重点管控单元-临港片区;环境管控单元编码:ZH50010220003;环境管控单元分类:重点管控单元3。参照《建设项目环评"三线一单"符合性分析技术要点(试行)》(渝环函[2022]397号)要求,分析拟建项目与"三线一单"生态环境分区管控要求的符合性,详见表 1.3-1。

其他 符 性 析

			表	1.3-1 本项目与"三线一单"管控要求的符	合性分析表	
	环境管控单元编码			环境管控单元名称	环境管控单元类型	
	Z	H50010220	0003	涪陵区工业城镇重点管控单元-临港片区	重点管控单元	
	管控要求层级	管控类型		管控要求	建设项目相关情况	符合性 分析结 论
其他			态屏障,推动优势	J习近平生态文明思想,筑牢长江上游重要生 区域重点发展、生态功能区重点保护、城乡 点区域、流域、产业的空间布局。	项目严格深入贯彻习近平生态文明思想	符合
符合性分	扩建化工园区和化工 和重要支流岸线一点 渣库、磷石膏库,具 建除外。禁止在长泡	江干支流、重要湖泊岸线一公里范围内新建、 工项目。禁止在长江干流岸线三公里范围内 公里范围内新建、改建、扩建尾矿库、冶炼 以提升安全、生态环境保护水平为目的的改 江、嘉陵江、乌江岸线一公里范围内布局新 造、印染等存在环境风险的项目。	拟建项目位于重庆涪陵工业园区龙桥组团 石塔片区,拟建项目属于有色金属压延加 工,不属于化工项目、不属于尾矿库、冶炼 渣库和磷石膏库项目,且不属于重化工、纸 浆制造、印染等存在环境风险的项目	符合		
析	控要求	局约束	化、建材、有色、 照《环境保护综合 扩建不符合国家石 建、改建、扩建" 相关法定规划,满 标、生态环境准入	规园区外新建、扩建钢铁、石化、化工、焦制浆造纸等高污染项目(高污染项目严格按名录》"高污染"产品名录执行)。禁止新建、优、现代煤化工等产业布局规划的项目。新两高"项目须符合生态环境保护法律法规和起重上点污染物排放总量控制、碳排放达峰目、清单、相关规划环评和相应行业建设项目环产文件审批原则要求。	拟建项目位于重庆涪陵工业园区龙桥组团石塔片区,为合规园区。拟建项目属于有色金属压延加工,项目使用电能、天然气为能源,不属于钢铁、石化、化工、焦化、建材、有色、制浆造纸等高污染项目;不属于石化、现代煤化工等项目;不属于"两高"项目	符合

	第四条 严把项目准入关口,对不符合要求的高耗能、高排放、低水平项目坚决不予准入。除在安全或者产业布局等方面有特殊要求的项目外,新建有污染物排放的工业项目应当进入工业集聚区。新建化工项目应当进入全市统一布局的化工产业集聚区。鼓励现有工业项目、化工项目分别搬入工业集聚区、化工产业集聚区。	拟建项目位于重庆涪陵工业园区龙桥组团 石塔片区,拟建项目属于有色金属压延加 工,不属于高耗能、高排放、低水平项目; 不属于化工项目	符合
	第五条 新建、扩建有色金属冶炼、电镀、铅蓄电池等企业应布设在依法合规设立并经过规划环评的产业园区。	拟建项目位于重庆涪陵工业园区龙桥组团 石塔片区,为合规园区。拟建项目属于有色 金属压延加工,不属于有色金属冶炼、电镀、 铅蓄电池等项目	符合
	第六条 涉及环境防护距离的工业企业或项目应通过选址或调整布局,原则上将环境防护距离控制在园区边界或用地红线内,提前合理规划项目地块布置、预防环境风险。	拟建项目不涉及环境防护距离	符合
	第七条 有效规范空间开发秩序,合理控制空间开发强度,切 实将各类开发活动限制在资源环境承载能力之内,为构建高效 协调可持续的国土空间开发格局奠定坚实基础。	拟建项目在现有厂房内进行设备的安装,不 新增用地	符合
污珠 排放 搭	双管 水泥熟料、平板玻璃、电解铝等行业新建、扩建项目实行产能	拟建项目属于有色金属压延加工,不属于所 列污染物排放管控项目和行业	符合

	T	, ,
第九条 严格落实国家及我市大气污染防控相关要求,对大气 环境质量未达标地区,新建、改扩建项目实施更严格的污染物 排放总量控制要求。严格落实区域削减要求,所在区域、流域 控制单元环境质量未达到国家或者地方环境质量标准的,建设 项目需提出有效的区域削减方案,主要污染物实行区域倍量削 减。	根据《2023年重庆市生态环境状况公报》, 拟建项目所在涪陵区为环境空气质量不达 标区,超标因子为 PM _{2.5} ,拟建项目大气污 染因子为颗粒物、二氧化硫、氮氧化物,取 得总量指标后投入运行	符合
第十条 在重点行业(石化、化工、工业涂装、包装印刷、油品储运销等)推进挥发性有机物综合治理,推动低挥发性有机物原辅材料和产品源头替代,推广使用低挥发性有机物含量产品,推动纳入政府绿色采购名录。有条件的工业集聚区建设集中喷涂工程中心,配备高效治污设施,替代企业独立喷涂工序,对涉及喷漆、喷粉、印刷等废气进行集中处理。	拟建项目属于有色金属压延加工,不涉及所 列污染物的排放	符合
第十一条 工业集聚区应当按照有关规定配套建设相应的污水 集中处理设施,安装自动监测设备,工业集聚区内的企业向污 水集中处理设施排放工业废水的,应当按照国家有关规定进行 预处理,达到集中处理设施处理工艺要求后方可排放。	生产废水经厂区现有污水处理站处理达《污水综合排放标准》(GB8978-1996)三级标准、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理达《污水综合排放标准》(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂	符合
第十二条 推进乡镇生活污水处理设施达标改造。新建城市生活污水处理厂全部按照一级 A 标及以上排放标准设计、施工、验收,建制乡镇生活污水处理设施出水水质不得低于一级 B 标排放标准;对现有截留制排水管网实施雨污分流改造,针对无法彻底雨污分流的老城区,尊重现实合理保留截留制区域,合理提高截留倍数;对新建的排水管网,全部按照雨污分流模式实施建设。	拟建项目不涉及	符合

1		T	1
	第十三条 新、改、扩建重点行业(重有色金属矿采选业(铜、铅锌、镍钴、锡、锑和汞矿采选)、重有色金属冶炼业(铜、铅锌、镍钴、锡、锑和汞冶炼)、铅蓄电池制造业、皮革鞣制加工业、化学原料及化学制品制造业(电石法聚氯乙烯制造、铬盐制造、以工业固体废物为原料的锌无机化合物工业等)、电镀行业)重点重金属污染物排放执行"等量替代"原则。	拟建项目不属于所列污染物排放管控项目 和行业	符合
	第十四条 固体废物污染环境防治坚持减量化、资源化和无害化的原则。产生工业固体废物的单位应当建立健全工业固体废物产生、收集、贮存、运输、利用、处置全过程的污染环境防治责任制度,建立工业固体废物管理台账。	建设单位建立健全工业固体废物全过程的污染环境防治责任制度,建立工业固体废物管理台账;拟建项目固体废物分类收集后得到妥善处置,不会造成二次污染	符合
	第十五条 建设分类投放、分类收集、分类运输、分类处理的生活垃圾处理系统。合理布局生活垃圾分类收集站点,完善分类运输系统,加快补齐分类收集转运设施能力短板。强化"无废城市"制度、技术、市场、监管、全民行动"五大体系"建设,推进城市固体废物精细化管理。	生活垃圾分类收集后交由环卫部门处理	符合
环境风 险防控	第十六条 深入开展行政区域、重点流域、重点饮用水源、化工园区等突发环境事件风险评估,建立区域突发环境事件风险评估数据信息获取与动态更新机制。落实企业突发环境事件风险评估制度,推进突发环境事件风险分类分级管理,严格监管重大突发环境事件风险企业。	拟建项目不属于重大突发环境事件风险企 业,但制定有突发环境事件应急预案	符合
	第十七条 强化化工园区涉水突发环境事件四级环境风险防范体系建设。持续推进重点化工园区(化工集中区)建设有毒有害气体监测预警体系和水质生物毒性预警体系。	拟建项目不属于化工项目	符合

	第十八条 实施能源领域碳达峰碳中和行动,科学有序推动能源生产消费方式绿色低碳变革。实施可再生能源替代,减少化石能源消费。加强产业布局和能耗"双控"政策衔接,促进重点用能领域用能结构优化和能效提升。	拟建项目积极推动节能、节水等措施,积极 响应低碳发展	符合
	第十九条 鼓励企业对标能耗限额标准先进值或国际先进水平,加快主要产品工艺升级与绿色化改造,推动工业窑炉、锅炉、电机、压缩机、泵、变压器等重点用能设备系统节能改造。推动现有企业、园区生产过程清洁化转型,精准提升市场主体绿色低碳水平,引导绿色园区低碳发展。	拟建项目所选设备均为节能产品	符合
资源开 发利用	第二十条 新建、扩建"两高"项目应采用先进适用的工艺技术和装备,单位产品物耗、能耗、水耗等达到清洁生产先进水平。	拟建项目不属于"两高"项目	符合
效率	第二十一条 推进企业内部工业用水循环利用、园区内企业间用水系统集成优化。开展火电、石化、有色金属、造纸、印染等高耗水行业工业废水循环利用示范。根据区域水资源禀赋和行业特点,结合用水总量控制措施,引导区域工业布局和产业结构调整,大力推广工业水循环利用,加快淘汰落后用水工艺和技术。	拟建项目用水量较小,不属于火电、石化、 有色金属、造纸、印染等高耗水行业	符合
	第二十二条 加快推进节水配套设施建设,加强再生水、雨水等非常规水多元、梯级和安全利用,逐年提高非常规水利用比例。结合现有污水处理设施提标升级扩能改造,系统规划城镇污水再生利用设施。	拟建项目用水量较小,且满足相关节水要求	符合

		第一条 执行重点管控单元市级总体要求第一条、第二条、第三条、第四条、第五条、第六条和第七条。	拟建项目符合市级管控要求	符合
		第二条 页岩气勘探开发项目应符合国土空间规划、页岩气发展		
		规划和生态环境功能区划等相关规划要求,禁止在饮用水源保		65 A
		护区、生态保护红线内进行页岩气开发活动,页岩气平台选址	拟建项目不属于页岩气勘探开发项目	符合
		应避开岩溶强发育、存在较多落水洞和岩溶漏斗的区域。		
	泰语去	第三条 白涛化工新材料产业园: 不规划食品加工企业等与园区		
	空间布局约束	主导产业环境相冲突的项目;禁止新建或扩建以化肥为产品的		
	问约米	合成氨项目(区域规划搬迁、综合利用项目除外);可能造成地	拟建项目位于重庆涪陵工业园区龙桥组团 石塔片区,不属于左侧所列禁止项目	符合
汝味豆兰体类		下水污染的项目应规避岩溶强发育、存在较多落水洞和岩溶漏		
涪陵区总体管 控要求		斗的区域布置。涪陵高新区李渡组团:禁止入驻化学原料药产		
江安水		业;禁止新建化工项目,现有化工项目禁止改扩建(安全、环	石培月区,小属 左侧別列宗正项目	
		保、节能和智能化改造项目除外)。涪陵临港经济区:禁止在化		
		工产业园外新建、扩建化工项目。清溪金属新材料产业园:长		
		江岸线1公里范围内禁止入驻危险化学品仓储企业。		
		第四条 执行重点管控单元市级总体要求第八条、第九条、第十	拟建项目符合市级管控要求	符合
	污染物	条、第十一条、第十二条、第十三条、第十四条和第十五条。	- 放足次百刊 日 中级 自江安水	11) 🖽
	排放管	第五条 新建燃煤机组实施超低排放;全面实施分散燃气锅炉低		
	控	氮排放改造; 重点推进挥发性有机物和氮氧化物协同减排, 加	拟建项目不设置燃煤机组、锅炉; 不涉及燃	符合
		强细颗粒物和臭氧协同控制。严格控制煤炭消耗,大力推动煤	用高污染燃料	10 🖽
		改气工程。高污染燃料禁燃区内禁止销售、燃用高污染燃料。		

第六条 协同提升电力、水泥、工业炉窑、大型锅炉、工业涂装、化工、包装印刷、家具制造和汽车制造等重点行业 NOx 去除效率。推进石油化工、有机化工、包装印刷、家具制造、表面涂装和油品储运销等重点行业、重点企业 VOCs "一企一策",加快推进中小微企业 VOCs 治理。	拟建项目不属于重点行业,且不属于 VOCs 排放企业	符合
第七条 持续提高城镇污水管网覆盖率,完善二、三级污水管网建设。	拟建项目废水经园区污水管网进入龙桥工 业园区污水处理厂	符合
第八条 页岩气开发应节约集约用地,采用"丛式井"开发模式。通过岩溶地层防污钻井技术、基于源头减排的井身结构优化技术、山地"井工厂"钻井技术、废气减排与降噪的网电钻井技术,避免对浅层溶洞、暗河造成影响,减少钻井岩屑、废弃钻井泥浆、废气和噪音等产生,实现页岩气田绿色开发。采用环境友好型储层改造技术,避免压裂液对环境产生影响。页岩气勘探开发产出水应优先进行回用,强化页岩气开采中的水环境保护和环境监测。	拟建项目不涉及页岩气开发	符合
第九条 加强全区榨菜生产企业污水处理设施管理,持续推动榨菜企业污水处理设施升级改造。	拟建项目不涉及榨菜生产	符合
第十条 大宗物料优先采用铁路、管廊、管道或水路运输,短途接驳优先使用新能源车辆运输;提高燃油车船能效标准,健全交通运输装备能效标识制度,加快淘汰高耗能高排放老旧车船。 全面实施汽车国六排放标准和非道路移动柴油机械国四排放标准。深入实施清洁柴油机行动,鼓励重型柴油货车更新替代。	拟建项目运输全面执行汽车国六排放标准 和非道路移动柴油机械国四排放标准	符合

		I	1
	第十一条 加强农业面源污染治理。在长江、乌江等重点河流沿线做好化肥农药减量示范建设,加强对榨菜企业、加工大户的固体废物处置监管,榨菜固废堆放点应采取防雨、防渗和防流失措施。开展水产养殖尾水处理和资源化利用,大力推进直排尾水养殖场整改,禁止未经处理的养殖尾水直排江河湖库。推进农村污水治理与配套管网建设,全面完成农村常住人口200户(或500人)以上的人口集聚点的生活污水治理。推进规模化畜禽养殖场污染治理设施建设,加强病死及病害动物无害化处理,通过养殖场入果园、养殖场周边建设种植基地、推广发酵床零排放养猪等措施,加强畜禽粪污无害化处理和综合利用。	拟建项目不涉及农药使用、水产养殖、规模 化畜禽养殖	符合
	第十二条 加强尾矿库环境监管。严格落实《中华人民共和国长江保护法》,长江干流岸线 3 公里范围内和重要支流岸线 1 公里范围内原则上不新(改、扩)建尾矿库。梳理排查尾矿库环境污染问题,建立问题整改台账清单。	拟建项目不涉及尾矿库	符合
	第十三条 开展矿区生态修复。完成历史遗留矿山生态修复,开展矿山开采损毁土地治理恢复,恢复矿区生态环境。推进矿区损毁土地复垦,加强新建、在建矿山管理,严格落实"边开采、边保护、边复垦"措施。	拟建项目不涉及矿区生态修复	符合
	第十四条 执行重点管控单元市级总体要求第十六条、第十七条。	 拟建项目符合市级管控要求 	符合
环境风险防控	第十五条 加强工业园区水环境风险防范。完善临港经济区化工产业园区、白涛化工新材料产业园环境风险防控建设,加强入园企业环境风险防范设施管理,不断健全"装置级、企业级、园区级、流域级"四级突发环境事件风险防控体系。	拟建项目采取了环境风险防范措施,环境风 险可防可控	符合

			第十六条 加强危险化学品运输管控,重点防控危化品专业运输船舶、危化品码头环境风险,严控发生水环境污染。严禁单壳化学品船和载重 600 吨以上的单壳油船进入长江干线、乌江。禁止在长江流域水上运输剧毒化学品和国家规定禁止通过内河运输的其他危险化学品。	拟建项目不涉及	符合
			第十七条 执行重点管控单元市级总体要求第十八条、第十九条、第二十条、第二十一条、第二十二条。	拟建项目符合市级管控要求	符合
			第十八条 鼓励实施先进的节能降碳以及废水循环利用技术。有序推进电解铝、水泥、合成氨等重点行业对照标杆水平实施节能降碳改造升级,提升能源资源利用效率。火电行业机组煤耗标准需达到国内清洁生产先进水平。	拟建项目不涉及	符合
		资源利 用效率	第十九条 大力推动煤电节能降碳改造、灵活性改造、供热改造 "三改联动",实现煤炭清洁高效利用。加强可再生能源开发力 度,加快风电、光伏项目建设,有序推进太阳能光伏发电等应 用示范工程。	拟建项项目不涉及煤炭使用,使用天然气、 电能等清洁能源	符合
			第二十条 推进既有产业园区和产业集群循环化改造。推动企业循环式生产、产业循环式组合,促进废物综合利用、能源梯级利用、水资源循环利用、工业余压余热、废气废液废渣资源综合利用,推广集中供气供热。实施蒸汽余热、循环水系统余热综合利用项目。	废边角料、不合格产品、废包装材料以及废 零部件交由物资回收单位进行资源化利用; 危险废物定期交由有危险废物处置资质的 单位收运处置	符合
(涪	管控要求 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	空间布	1.禁止在化工产业园外改扩建现有化工项目(安全、环保、节 能和智能化改造项目除外)。	拟建项目为铝合金型材生产项目,不属于化 工项目	符合
単元	重点管控 元-临港片 区)	局约束	2.禁止在长江干支流岸线一公里范围内新建、扩建化工园区和化工项目。	拟建项目为铝合金型材生产项目,不属于化 工园区和化工项目	符合

	3.禁止在长江干流岸线三公里范围内和重要支流岸线一公里范围内新建、改建、扩建尾矿库,以提升安全、生态环境保护水平为目的的改建除外。	拟建项目为铝合金型材生产项目,不属于尾 矿库	符合
	4.城市建成区禁止新建 20 蒸吨/小时及以下燃煤锅炉,全面淘汰 10 蒸吨/小时及以下燃煤锅炉。	拟建项目不涉及锅炉	符合
	5.禁止在居民住宅楼、未配套设立专用烟道的商住综合楼以及 商住综合楼内与居住层相邻的商业楼层内新建、改建、扩建产 生油烟、异味、废气的餐饮服务、机动车维修项目。	拟建项目位于重庆涪陵工业园区龙桥组团 石塔片区,不属于产生油烟、异味、废气的 餐饮服务、机动车维修项目	符合
	1.实施中机龙桥、蓬威石化、正元香料锅炉低氮燃烧改造。	拟建项目不涉及锅炉	符合
	2.加强涉 VOCs 排放企业的排查整治,有效提升污染物收集处理效率。	不属于 VOCs 排放企业	符合
	3.加快实施中粮油脂(重庆)有限公司挥发性有机物治理	不属于 VOCs 排放企业	符合
	4.在临港经济区集中供热管网覆盖地区,除安全、质量要求外,禁止新建、扩建分散燃煤供热锅炉。	拟建项目不涉及锅炉	符合
污染物	5.加强中化涪陵化工磷石膏尾矿库管理。	拟建项目不涉及	符合
排放管 控	6.加强辖区内企业、园区污水处理厂废水治理设施的管理,严禁废水超标排放。	生产废水经厂区现有污水处理站处理达《污水综合排放标准》(GB8978-1996)三级标准、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理达《污水综合排放标准》(GB8978-1996)三级标准,满足龙桥工业园区污水处理厂接管要求	符合
	7.加强学校、医院周边区域汽修行业大气和噪声、娱乐业噪声污染防控。	拟建项目不属于汽修行业、娱乐业	符合
环境风 险防控	1.强化重庆市涪陵临港经济区环境应急分中心管理,提升临港经济区应急救援能力。	不涉及	符合

		2.完善入园企业环境风险防范设施建设; 化工产业园建立"装置级、企业级、园区级、流域级"四级突发环境事件风险防控体系。	企业将进一步完善环境风险防范体系的建 设,完善风险防范制度,确保环境风险可控	符合
		3.制定完善尾矿库突发环境事件应急预案,加强中化涪陵化工 磷石膏渣坝坝体位移监测和磷石膏渗漏液污水处理厂出厂水质 监测。	拟建项目不涉及尾矿库	符合
		4.强化化工企业环境风险管控。	拟建项目不属于化工企业	符合
		5.加强园区地下水和土壤环境质量监测。	园区将加强地下水和土壤环境质量监测	符合
	V2 N2 72	1.火电行业机组煤耗标准需达到国内清洁生产先进水平。		
	资源开 发效率	2.全面推进城镇绿色规划、绿色建设、绿色运行管理,推动低碳城市、韧性城市、海绵城市、"无废城市"建设。	拟建项目为铝合金型材生产项目,不涉及左 侧所列项目	符合
	要求	3.全面提高建筑节能标准,加快发展超低能耗建筑,积极推进 既有建筑节能改造、建筑光伏一体化建设。		
	1	サイスの トロロ (クラ) 本分 1 かた人 は リ		

表 1.3-2 与园区"负面清单"符合性分析

行业、项目	环境管理要求	拟井頂口桂加	符合性	
11 业、坝日	禁止类	限制类	拟建项目情况	付行性
化工	不再引入大型重污染化工,例如石油炼化等	南岸浦片区限制发展 PX 项目		
食品	南岸浦片区不再新引入食品企业;新石片区原油加工及石油品制造区			
長前	不引入食品企业	/	拟建项目不属于	
医药	不引入原料药生产企业	/	化工、食品、医	符合
	维持现有的蓬威石化供热中心燃煤锅炉(共 390t/h)、重油深加工配		药、燃煤项目	
大型燃煤项目	套水煤浆锅炉(共105t/h),以及已经环评批复的龙桥电厂热电联产	/		
	的扩建工程燃煤锅炉(共 4015t/h),不新增大型燃煤项目			
77 1 11 11 11	八七二年 地本在口放入《一体 英》加头更少			

根据上述分析可知,拟建项目符合"三线一单"相关要求。

1.3.2 与相关生态环境保护法律法规政策、生态环境保护规划等的符合性分析

(1)与《产业结构调整指导目录(2024年本)》符合性分析 拟建项目为铝合金型材生产项目,根据《国民经济行业分类》

(GB/T4754-2017),属于铝压延加工(C3252)。对照《产业结构调整指导目录(2024年本)》,拟建项目不属于其中规定的鼓励类、限制类和淘汰类,视为允许类。同时,重庆市涪陵区发展和改革委员会对拟建项目予以备案,备案项目代码为2312-500102-04-02-832442。

综上所述,拟建项目的建设符合国家产业政策要求。

(2) 与《重庆市产业投资准入工作手册》符合性分析

根据《重庆市发展和改革委员会关于印发重庆市产业投资准入工作手册的通知》(渝发改投资[2022]1436号)中的相关规定及要求,拟建项目与其符合性分析见表 1.3-3。

其他 符合 性 析

表 1.3-3 与《重庆市产业投资准入工作手册》符合性分析

序号	渝发改投资[2022]1436 号中相关规 定	拟建项目情况	符合性			
	(一)全市范围内不	予准入的产业				
1	国家产业结构调整指导目录中的淘汰类项目	拟建项目不属于《产业结构调整指导目录(2024年本)》中规定的鼓励类、限制类和淘汰类,视为允许类	符合			
2	天然林商业性采伐	不涉及天然林商业性采伐	符合			
3	法律法规和相关政策明令不予准入 的其他项目	不属于法律法规和相关政 策明令不予准入的项目	符合			
	(二)重点区域不-	予准入的产业				
1	外环绕城高速公路以内长江、嘉陵 江水域采砂	不属于采砂项目	符合			
2	二十五度以上陡坡地开垦种植农作 物	不属于开垦种植农作物	符合			
3	在自然保护区核心区、缓冲区的岸 线和河段范围内投资建设旅游和生 产经营项目	不涉及自然保护区,且不 属于旅游和生产经营项目	符合			

			1
4	饮用水水源一级保护区的岸线和河 段范围内新建、改建、扩建与供水 设施和保护水源无关的项目,以及 网箱养殖、畜禽养殖、放养畜禽、 旅游等可能污染饮用水水体的投资 建设项目。在饮用水水源二级保护 区的岸线和河段范围内新建、改建、 扩建排放污染物的投资建设项目	不涉及饮用水水源保护区	符合
5	长江干流岸线3公里范围内和重要 支流岸线1公里范围内新建、改建、 扩建尾矿库、冶炼渣库和磷石膏库 (以提升安全、生态环境保护水平 为目的的改建除外)	拟建项目为铝合金型材生 产项目,不属于尾矿库、 冶炼渣库和磷石膏库	符合
6	在风景名胜区核心景区的岸线和河 段范围内投资建设与风景名胜资源 保护无关的项目	不涉及风景名胜区	符合
7	在国家湿地公园的岸线和河段范围 内挖沙、采矿,以及任何不符合主 体功能定位的投资建设项目	不涉及国家湿地公园	符合
8	在《长江岸线保护和开发利用总体 规划》划定的岸线保护区和保留区 内投资建设除事关公共安全及公众 利益的防洪护岸、河道治理、供水、 生态环境保护、航道整治、国家重 要基础设施以外的项目	不涉及长江岸线保护区和 保留区	符合
9	在《全国重要江河湖泊水功能区划》 划定的河段及湖泊保护区、保留区 内投资建设不利于水资源及自然生 态保护的项目	不涉及《全国重要江河湖 泊水功能区划》划定的河 段及湖泊保护区、保留区	符合
	(三)全市范围内限	制准入的产业	
1	新建、扩建不符合国家产能置换要 求的严重过剩产能行业的项目。新 建、扩建不符合要求的高耗能高排 放项目	拟建项目为铝合金型材生 产项目,不属于严重过剩 产能行业和高耗能高排放 项目	符合
2	新建、扩建不符合国家石化、现代 煤化工等产业布局规划的项目	不属于国家石化、现代煤 化工等项目	符合

3	在合规园区外新建、扩建钢铁、石 化、化工、焦化、建材、有色、制 浆造纸等高污染项目	拟建项目位于重庆涪陵工业园区龙桥组团石塔片区,为合规园区。拟建项目为铝合金型材生产项目,项目使用电能、天然气为能源,不属于钢铁、石化、化工、焦化、建材、有色、制浆造纸等高污染项目	符合
4	《汽车产业投资管理规定》(国家发展和改革委员会令第22号)明确禁止建设的汽车投资项目	不属于汽车投资项目	符合
	(四)重点区域范围内	限制准入的产业	
1	长江干支流、重要湖泊岸线1公里 范围内新建、扩建化工园区和化工 项目,长江、嘉陵江、乌江岸线1 公里范围内布局新建纸浆制造、印 染等存在环境风险的项目	不属于化工项目、不属于 纸浆制造、印染等存在环 境风险的项目	符合
2	在水产种质资源保护区的岸线和河 段范围内新建围湖造田等投资建设 项目	不属于围湖造田等投资建 设项目	符合

由表 1.3-3 分析可知, 拟建项目不属于重庆市不予准入、限制准入产业, 符合《重庆市发展和改革委员会关于印发重庆市产业投资准入工作手册的通知》(渝发改投资[2022]1436号)产业投资政策要求。

(3)与《长江经济带发展负面清单指南(试行,2022年版)》的符合性分析

根据《长江经济带发展负面清单指南(试行,2022年版)》(长江办[2022]7号),拟建项目与负面清单的符合性分析见表 1.3-4。

表 1.3-4 与《长江经济带发展负面清单指南(试行, 2022 年版)》符合性分析

序号	负面清单指南要求	拟建项目情况	符合 性
1	禁止建设不符合全国和省级港口布局规划以及港口总体规划的码头项目,禁止建设不符合《长江干线过江通道布局规划》的过长江通道项目	拟建项目不属于码头项 目和过长江通道项目	符合
2	禁止在自然保护区核心区、缓冲区的岸线和河段范围内投资建设旅游和生产经营项目。禁止在风景名胜区核心景区的岸线和河段范围内投资建设与风景名胜资源保护无关的项目	拟建项目位于重庆涪陵 工业园区龙桥组团石塔 片区,不在自然保护区 和风景名胜区等范围内	符合

3	禁止在饮用水水源一级保护区的岸线和河段范围内新建、改建、扩建与供水设施和保护水源无关的项目,以及网箱养殖、畜禽养殖、旅游等可能污染饮用水水体的投资建设项目。禁止在饮用水水源二级保护区的岸线和河段范围内新建、改建、扩建排放污染物的投资建设项目	拟建项目位于重庆涪陵 工业园区龙桥组团石塔 片区,不涉及饮用水水 源保护区	符合
4	禁止在水产种质资源保护区的岸线和河 段范围内新建围湖造田、围海造地或围填 海等投资建设项目。禁止在国家湿地公园 的岸线和河段范围内挖沙、采矿,以及任 何不符合主体功能定位的投资建设项目	拟建项目位于重庆涪陵 工业园区龙桥组团石塔 片区,不涉及水产种质 资源保护区、国家湿地 公园	符合
5	禁止违法利用、占用长江流域河湖岸线。禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施以外的项目。禁止在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保留区内投资建设不利于水资源及自然生态保护的项目	拟建项目位于重庆涪陵 工业园区龙桥组团石塔 片区,不涉及长江流域 河湖岸线	符合
6	禁止未经许可在长江干支流及湖泊新设、改设或扩大排污口	拟建项目不涉及在长江 干支流及湖泊新设、改 设或扩大排污口	符合
7	禁止在"一江一口两湖七河"和 332 个水 生生物保护区开展生产性捕捞	拟建项目不涉及生产性 捕捞	符合
8	禁止在长江干支流、重要湖泊岸线一公里范围内新建、扩建化工园区和化工项目。禁止在长江干流岸线三公里范围内和重要支流岸线一公里范围内新建、改建、扩建尾矿库、冶炼渣库和磷石膏库,以提升安全、生态环境保护水平为目的的改建除外	拟建项目为铝合金型材 生产项目,不属于化工 项目、不属于尾矿库、 冶炼渣库和磷石膏库	符合
9	禁止在合规园区外新建、扩建钢铁、石化、化工、焦化、建材、有色、制浆造纸等高污染项目	拟建项目位于重庆涪陵 工业园区龙桥组团石塔 片区,该园区为合规工 业园区,且项目生产铝 合金型材,不属于高污 染项目	符合

10	禁止新建、扩建不符合国家石化、现代煤	拟建项目不属于石化、	符合
10	化工等产业布局规划的项目	现代煤化工等项目	付行
	禁止新建、扩建法律法规和相关政策明令	拟建项目符合产业政策	
	禁止的落后产能项目。禁止新建、扩建不	要求,符合园区规划,	
11	符合国家产能置换要求的严重过剩产能	不属于落后产能项目、	符合
	行业的项目。禁止新建、扩建不符合要求	严重过剩产能行业及高	
	的高耗能高排放项目	耗能高排放项目	

根据表 1.3-4 分析可知, 拟建项目不属于长江经济带发展负面清单中指出的禁止建设类项目,符合《长江经济带发展负面清单指南(试行,2022 年版)》中的相关要求。

(4)与《四川省、重庆市长江经济带发展负面清单实施细则(试行, 2022年版)》的符合性分析

根据《四川省、重庆市长江经济带发展负面清单实施细则(试行, 2022 年版)》,拟建项目与负面清单的符合性分析见表 1.3-5。

表 1.3-5 与《四川省、重庆市长江经济带发展负面清单实施细则(试行,2022 年版)》符合性分析

序号	管控要求	拟建项目情况	符合性
1	禁止新建、改建和扩建不符合全国港口布局规划,以及《重庆港总体规划(2035年)》等省级港口布局规划及市级港口总体规划的码头项目	拟建项目不属于港口、 码头项目	符合
2	禁止新建、改建和扩建不符合《长江干线过江通道布局规划(2020-2035年)》的过长江通道项目(含桥梁、隧道),国家发展改革委同意过长江通道线位调整的除外	拟建项目不属于过长 江通道项目	符合
3	禁止在自然保护区核心区、缓冲区的岸 线和河段范围内投资建设旅游和生产 经营项目。自然保护区的内部未分区 的,依照核心区和缓冲区的规定管控	 拟建项目不涉及自然 保护区	符合
4	禁止违反风景名胜区规划,在风景名胜 区内设立各类开发区。禁止在风景名胜 区核心景区的岸线和河段范围内建设 宾馆、招待所、培训中心、疗养院以及 与风景名胜资源保护无关的项目	拟建项目不涉及风景 名胜区	符合

5	禁止在饮用水水源准保护区的岸线和河段范围内新建、扩建对水体污染严重的建设项目,禁止改建增加排污量的建设项目	拟建项目不涉及饮用 水水源准保护区	符合
6	饮用水水源二级保护区的岸线和河段 范围内,除遵守准保护区规定外,禁止 新建、改建、扩建排放污染物的投资建 设项目;禁止从事对水体有污染的水产 养殖等活动	拟建项目不涉及饮用 水水源二级保护区	符合
7	饮用水水源一级保护区的岸线和河段 范围内,除遵守二级保护区规定外,禁 止新建、改建、扩建与供水设施和保护 水源无关的项目,以及网箱养殖、畜禽 养殖、旅游等可能污染饮用水水体的投 资建设项目	拟建项目不涉及饮用 水水源一级保护区	符合
8	禁止在水产种质资源保护区岸线和河段范围内新建围湖造田、围湖造地或挖沙采石等投资建设项目	拟建项目不涉及水产 种质资源保护区	符合
9	禁止在国家湿地公园的岸线和河段范围内开(围)垦、填埋或者排干湿地,截断湿地水源,挖沙、采矿,倾倒有毒有害物质、废弃物、垃圾,从事房地产、度假村、高尔夫球场、风力发电、光伏发电等任何不符合主体功能定位的建设项目和开发活动,破坏野生动物栖息地和迁徙通道、鱼类洄游通道	拟建项目不涉及国家 湿地公园	符合
10	禁止违法利用、占用长江流域河湖岸线。禁止在《长江岸线保护和开发利用总体规划》划定的岸线保护区和岸线保留区内投资建设除事关公共安全及公众利益的防洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施以外的项目	拟建项目位于重庆涪 陵工业园区龙桥组团 石塔片区,不涉及长江 流域河湖岸线	符合
11	禁止在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保留区内投资建设不利于水资源及自然生态保护的项目	拟建项目不涉及《全国 重要江河湖泊水功能 区划》划定的河段及湖 泊保护区、保留区	符合
12	禁止在长江流域江河、湖泊新设、改设或者扩大排污口,经有管辖权的生态环境主管部门或者长江流域生态环境监督管理机构同意的除外	拟建项目不涉及新设、 改设或扩大排污口	符合

13	禁止在长江干流、大渡河、岷江、赤水河、沱江、嘉陵江、乌江、汉江和51个(四川省45个、重庆市6个)水生生物保护区开展生产性捕捞	拟建项目不涉及生产 性捕捞	符合
14	禁止在长江干支流、重要湖泊岸线一公 里范围内新建、扩建化工园区和化工项 目	拟建项目为铝合金型 材生产项目,不属于化 工园区和化工项目	符合
15	禁止在长江干流岸线三公里范围内和 重要支流岸线一公里范围内新建、改建、扩建尾矿库、冶炼渣库、磷石膏库,以提升安全、生态环境保护水平为目的 的改建除外	拟建项目为铝合金型 材生产项目,不属于尾 矿库、冶炼渣库和磷石 膏库	符合
16	禁止在生态保护红线区域、永久基本农田集中区域和其他需要特别保护的区域内选址建设尾矿库、冶炼渣库、磷石膏库	拟建项目不涉及生态 保护红线区域、永久基 本农田集中区域和其 他需要特别保护的区域,为铝合金型材生产 项目,不属于尾矿库、 冶炼渣库和磷石膏库	符合
17	禁止在合规园区外新建、扩建钢铁、石化、化工、焦化、建材、有色、制浆造纸等高污染项目	拟建项目位于重庆涪 陵工业园区龙桥组团 石塔片区,该园区为合 规工业园区,且项目生 产铝合金型材,不属于 高污染项目	符合
18	禁止新建、扩建不符合国家石化、现代 煤化工等产业布局规划的项目: ①严格控制新增炼油产能,未列入《石 化产业规划布局方案(修订版)》的新 增炼油产能一律不得建设。 ②新建煤制烯烃、煤制芳烃项目必须列 入《现代煤化工产业创新发展布局方 案》,必须符合《现代煤化工建设项目 环境准入条件(试行)》要求	拟建项目为铝合金型 材生产项目,不属于石 化、现代煤化工等项目	符合
19	禁止新建、扩建法律法规和相关政策明令禁止的落后产能项目。对《产业结构调整指导目录》中淘汰类项目,禁止投资;限制类的新建项目,禁止投资,对属于限制类的现有生产能力,允许企业在一定期限内采取措施改造升级	拟建项目不属于落后 产能项目,为《产业结 构调整指导目录(2024 年本)》中允许类项目	符合

20	禁止新建、扩建不符合国家产能置换要求的严重过剩产能行业的项目。对于不符合国家产能置换要求的严重过剩产能行业,不得以其他任何名义、任何方式备案新增产能项目	拟建项目为铝合金型 材生产项目,不属于严 重过剩产能行业的项 目	符合
21	禁止建设以下燃油汽车投资项目(不在中国境内销售产品的投资项目除外) ①新建独立燃油汽车企业; ②现有汽车企业跨乘用车、商用车类别建设燃油汽车生产能力; ③外省现有燃油汽车企业整体搬迁至本省(列入国家级区域发展规划或不改变企业股权结构的项目除外); ④对行业管理部门特别公示的燃油汽车企业进行投资(企业原有股东投资或将该企业转为非独立法人的投资项目除外)	拟建项目为铝合金型 材生产项目,不属于燃 油汽车投资项目	符合
22	禁止新建、扩建不符合要求的高耗能、高排放、低水平项目	拟建项目不属于高耗 能、高排放、低水平项 目	符合

根据表 1.3-5 分析可知,拟建项目不属于《四川省、重庆市长江经济带发展负面清单实施细则(试行,2022 年版)》禁止建设类项目,符合相关要求。

(5)与《中华人民共和国长江保护法》的符合性分析 拟建项目与《中华人民共和国长江保护法》的符合性分析见表 1.3-6。

表 1.3-6 与《中华人民共和国长江保护法》符合性分析

序 号	相关要求	拟建项目情况	符合 性
1	禁止在长江流域重点生态功能区布局对生态系统有严重影响的产业。禁止重污染企业和项目向长江中上游转	拟建项目位于重庆涪陵 工业园区龙桥组团石塔 片区,选址不在长江流域 重点生态功能区内,且不 属于对生态系统有严重 影响的产业	符合
2	禁止在长江干支流岸线一公里范围内新建、扩建化工园区和化工项目	拟建项目为铝合金型材 生产项目,不属于化工园 区和化工项目	符合
3	禁止在长江干流岸线三公里范围内和重要支流岸线一公里范围内新建、改建、扩建尾矿库;但是以提升安全、生态环境保护水平为目的的改建除外	拟建项目为铝合金型材 生产项目,不属于尾矿库 项目	符合

			1
4	禁止船舶在划定的禁止航行区域内航行。因国家发展战略和国计民生需要,在水生生物重要栖息地禁止航行区域内航行的,应当由国务院交通运输主管部门商国务院农业农村主管部门同意,并应当采取必要措施,减少对重要水生生物的干扰。严格限制在长江流域生态保护红线、自然保护地、水生生物重要栖息地水域实施航道整治工程;确需整治的,应当经科学论证并依法办理相关手续	拟建项目为铝合金型材 生产项目,不属于通航、 航道整治工程	符合
5	禁止在长江流域开放水域养殖、投放外来物种或者其他非本地物种种质资源	拟建项目不涉及在长江 流域开放水域养殖、投放 外来物种或者其他非本 地物种种质资源	符合
6	磷矿开采加工、磷肥和含磷农药制造等 企业,应当按照排污许可要求,采取有 效措施控制总磷排放浓度和排放总量; 对排污口和周边环境进行总磷监测,依 法公开监测信息	拟建项目为铝合金型材 生产项目,不属于磷矿开 采加工、磷肥和含磷农药 制造等行业	符合
7	禁止在长江流域水上运输剧毒化学品和国家规定禁止通过内河运输的其他危险化学品	拟建项目不涉及在长江 流域水上运输剧毒化学 品和国家规定禁止通过 内河运输的其他危险化 学品	符合
8	禁止违法利用、占用长江流域河湖岸线	拟建项目不涉及长江流 域河湖岸线违法利用、占 用情况	符合
9	禁止在长江流域水土流失严重、生态脆弱的区域开展可能造成水土流失的生产建设活动。确因国家发展战略和国计民生需要建设的,应当经科学论证,并依法办理审批手续	拟建项目选址不属于长 江流域水土流失严重、生 态脆弱的区域	符合
10	推动钢铁、石油、化工、有色金属、建材、船舶等产业升级改造,提升技术装备水平;推动造纸、制革、电镀、印染、有色金属、农药、氮肥、焦化、原料药制造等企业实施清洁化改造。企业应当通过技术创新减少资源消耗和污染物排放。采取措施加快重点地区危险化学品生产企业搬迁改造	拟建项目不属于所提及的钢铁、石油、化工、有色金属、建材、船舶、造纸、制革、电镀、印染、农药、氮肥、焦化、原料药制造等项目,不涉及危险化学品生产	符合

根据表 1.3-6 分析可知, 拟建项目符合《中华人民共和国长江保护法》 文件要求。

(6)与《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评[2021] 45 号)符合性分析

拟建项目为铝合金型材生产项目,属于《国民经济行业分类》(2017版)中有色金属冶炼和压延加工业-铝压延加工,不属于《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评[2021]45号)中提出的"两高"类项目,与环环评[2021]45号文件的符合性分析见表 1.3-7。

表 1.3-7 与《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》 (环环评[2021] 45 号)符合性分析

序号	环环评[2021] 45 号文件内容	拟建项目情况	符合性	
_	加强生态环境分区管护	生态环境分区管控和规划约束		
1	深入实施"三线一单"。各级生态环境部门应加快推进"三线一单"成果在"两高"行业产业布局和结构调整、重大项目选址中的应用。地方生态环境部门组织"三线一单"地市落地细化及后续更新调整时,应在生态环境准入清单中深化"两高"项目环境准入及管控要求;承接钢铁、电解铝等产业转移地区应严格落实生态环境分区管控要求,将环境质量底线作为硬约束。	项目的建设符合重庆 市及涪陵区"三线一 单"管理的要求	符合	
2	强化规划环评效力。各级生态环境部门应严格审查涉"两高"行业的有关综合性规划和工业、能源等专项规划环评,特别对为上马"两高"项目而修编的规划,在环评审查中应严格控制"两高"行业发展规模,优化规划布局、产业结构与实施时序。以"两高"行业为主导产业的园区规划环评应增加碳排放情况与减排潜力分析,推动园区绿色低碳发展。推动煤电能源基地、现代煤化工示范区、石化产业基地等开展规划环境影响跟踪评价,完善生态环境保护措施并适时优化调整规划。	拟建项目为铝合金型 材生产项目,不属于 文件中的"两高"项 目	符合	

=	严格"两高"项目	环评审批	
1	严把建设项目环境准入关。新建、改建、扩建"两高"项目须符合生态环境保护法律法规和相关法定规划,满足重点污染物排放总量控制、碳排放达峰目标、生态环境准入清单、相关规划环评和相应行业建设项目环境准入条件、环评文件审批原则要求。石化、现代煤化工项目应纳入国家产业规划。新建、扩建石化、化工、焦化、有色金属冶炼、平板玻璃项目应布设在依法合规设立并经规划环评的产业园区。各级生态环境部门和行政审批部门要严格把关,对于不符合相关法律法规的,依法不予审批。	拟建项目为铝合金型 材生产项目,不属于 文件中的"两高"项 目,符合生态环境保 护法律法规和相关法 定规划,满足重点污 染物排放总量控制、 碳排放达峰目标、生 态环境准入清单相关 要求,符合规划环 提出的相关污染物防 控要求和排放限值	符合
2	落实区域削减要求。新建"两高"项目应按照《关于加强重点行业建设项目区域削减措施监督管理的通知》要求,依据区域环境质量改善目标,制定配套区域污染物削减方案,采取有效的污染物区域削减措施,腾出足够的环境容量。国家大气污染防治重点区域(以下称重点区域)内新建耗煤项目还应严格按规定采取煤炭消费减量替代措施,不得使用高污染燃料作为煤炭减量替代措施。	拟建项目为铝合金型 材生产项目,不属于 文件中的"两高"项 目。项目建成后各污 染物能实现达标增 放,对环境区标,则 以接受。根据《2023 年重庆市生态环境状况公报》,为环境空气 质量不达标区,拟建 项目大气污氧因子二 氧化硫取得总量指标 后投入运行	符合
三	推进"两高"行业减污		
1	提升清洁生产和污染防治水平。新建、 扩建"两高"项目应采用先进适用的工 艺技术和装备,单位产品物耗、能耗、 水耗等达到清洁生产先进水平,依法制 定并严格落实防治土壤与地下水污染的 措施。国家或地方已出台超低排放要求 的"两高"行业建设项目应满足超低排 放要求。鼓励使用清洁燃料,重点区域 建设项目原则上不新建燃煤自备锅炉。 鼓励重点区域高炉-转炉长流程钢铁企 业转型为电炉短流程企业。大宗物料优 先采用铁路、管道或水路运输,短途接 驳优先使用新能源车辆运输。	拟建项目为铝合金型 材生产项目,不属于 文件中的"两高"项 目。拟建项目采用先 进适用的工艺技术和 装备,单位产品物耗、 能耗、水耗等达到清 洁生产先进水平;依 法制定并严格落实防 治土壤与地下水污染 的措施;使用清洁燃 料天然气	符合

将碳排放影响评价纳入环境影响评价体系。各级生态环境部门和行政审批部门应积极推进"两高"项目环评开展试点工作,衔接落实有关区域和行业碳达峰行动方案、清洁能源替代、清洁运输、煤炭消费总量控制等政策要求。在环评工作中,统筹开展污染物和碳排放的源项识别、源强核算、减污降碳措施可行性论证及方案比选,提出协同控制最优方案。鼓励有条件的地区、企业探索实施减污降碳协同治理和碳捕集、封存、综合利用工程试点、示范。

2

符合

根据表 1.3-7 分析可知,拟建项目符合《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评[2021] 45 号)相关要求。

(7)与《重庆市生态环境局办公室关于贯彻落实坚决遏制高耗能、高排放项目盲目发展相关要求的通知》(渝环办[2021] 168 号)符合性分析

拟建项目为铝合金型材生产项目,属于《国民经济行业分类》(2017版)中有色金属冶炼和压延加工业-铝压延加工,不属于"渝环办[2021]168号"文件中的煤电、石化、化工、钢铁、有色金属冶炼、建材等六个行业,根据《重庆南涪铝业有限公司3100吨挤压生产线项目节能报告》,项目年综合能源消费量为1095.49吨标准煤(当量值)、2064.05吨标准煤(等价值),小于文件中提出的"其他行业年综合能源消费量当量值在5000吨标准煤及以上的口径",不属于文件中"高耗能、高排放"类项目。

综上所述,拟建项目不属于文件环环评[2021] 45 号和渝环办[2021] 168 号中的"两高"以及"其他行业年综合能源消费量当量值在 5000 吨标准煤及以上的口径"类项目,项目的建设符合文件要求。

2.1 项目由来

重庆南涪铝业有限公司是一家有色金属压延加工的综合性高科技国有独资企业,公司成立于2010年4月,注册资本1500万元,为重庆市大方金属材料有限公司(占股52%)、涪陵水利电力投资公司(占股48%),合资公司;2016年2月与重庆天彩铝业有限公司实施资产重组,转型为重庆涪陵能源实业投资集团有限公司独资子公司,注册资本更新为2500万元。公司专业生产各种建筑铝型材、工业用铝型材及深度加工铝制品。

重庆南涪铝业有限公司于 2010 年委托中煤科工集团重庆设计研究院编制完成《年产 50000t 高端铝型材项目一期工程环境影响报告书》,并于 2010 年 7 月取得环评批复(渝(涪)环准[2010]123 号),于 2015 年 10 月通过验收并取得验收批复(渝(涪)环验[2015]74 号); 2016 年委托重庆浩力环境影响评价有限公司编制完成《高端家装铝型材产品升级技改项目环境影响报告表》,并于 2016 年 8 月取得环评批复(渝(涪)环准[2016]128 号),于 2018 年 1 月通过验收并取得竣工环境保护验收资料回执单(编号: 2018-02); 2018 年委托重庆后科环保有限责任公司编制完成《2 万吨铝型材扩建项目一期工程环境影响报告表》,并于 2018 年 8 月取得环评批复(渝(涪)环准[2018]70 号),于 2019 年 12 月通过验收并取得建设项目竣工环境保护验收信息收讫回执单(验收回执单号:2019-115); 2022 年委托重庆市洁美洁环境工程有限公司编制完成《挤压生产线升级技术改造项目环境影响报告表》,并于 2022 年 4 月取得环评批复(渝(涪)环准[2022]021 号),2024 年 6 月,该项目完成了自主竣工环境保护验收(竣工环境保护验收意见见附件)。

建设内容

根据市场需求,重庆南涪铝业有限公司拟投资 2000 万元在厂区现有厂房内的空置区域建设"3100吨挤压生产线(以下简称"拟建项目")",扩建 1 条 3100吨高端智能挤压生产线,设计新增产能 5600吨/年铝合金型材。建设单位已取得重庆市涪陵区发展和改革委员会下发的《重庆市企业投资项目备案证》(项目代码: 2312-500102-04-02-832442)。

根据《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》、《建设项目环境保护管理条例》、《建设项目环境影响评价分类

管理名录》等规定,拟建项目须履行环境影响评价制度。根据《建设项目环境影响评价分类管理名录》(2021 年版),拟建项目属于"二十九、有色金属冶炼和压延加工业 32—65 有色金属压延加工 325",该类别均编制环境影响报告表;同时,根据"重庆市生态环境局关于印发《重庆市不纳入环境影响评价管理的建设项目名录(2023 年版)》的通知(渝环规[2023]8号)",拟建项目不属于重庆市不纳入环境影响评价管理的建设项目名录。综上所述,拟建项目应编制环境影响报告表。

受重庆南涪铝业有限公司委托,我公司承担了该项目的环境影响评价工作。接受委托后,我公司立即组织专业技术人员对该项目进行了现场踏勘和资料收集,详细了解了项目建设内容,在此基础上编制完成了《3100吨挤压生产线环境影响报告表》。

2.2 评价构思

- (1)本次仅在厂区现有厂房内的空置区域扩建 1 条 3100 吨高端智能挤压生产线,不影响重庆南涪铝业有限公司现有的生产规模、产品方案,因此,本次评价不再对项目实施后全厂产品方案、建设内容开展前后对照,仅对现有工程环保手续执行情况、污染物排放达标情况及主要污染物排放量等情况作简要介绍,同时对依托设施进行依托可行性分析。
- (2)本次扩建项目是在重庆南涪铝业有限公司现有厂区内进行生产 线扩建,达到产能提升的目的。拟建项目均在现有厂房内实施,无新增 用地及厂房,因此,本次评价将以运营期为主,简化施工期的环境影响。
- (3) 拟建项目能耗低于 5000 吨标准煤,不属于《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》(环环评[2021] 45 号)中的"两高"项目,不属于《重庆市生态环境局办公室关于贯彻落实坚决遏制高耗能、高排放项目盲目发展相关要求的通知》(渝环办[2021] 168 号)要求的"煤电、石化、化工、钢铁、有色金属冶炼、建材等六个行业以及其他行业年综合能源消费量当量值在 5000 吨标准煤及以上的口径"的高耗能项目。

2.3 项目基本情况

项目名称: 3100 吨挤压生产线

建设单位: 重庆南涪铝业有限公司

建设性质: 扩建

建设地点: 重庆市涪陵区龙桥街道龙港大道 466 号

占地面积:不新征用地,不新建厂房,在现有厂区内的已建生产厂 房内实施

总建筑面积: 3800m²

建设内容及规模:在厂区现有厂房内的空置区域扩建 1 条 3100 吨高端智能挤压生产线,生产线配置加热炉、热剪机、挤压机、模具炉、时效炉等设施设备,设计生产规模为年产铝合金型材 5600 吨/年

建设周期: 9个月

项目投资:总投资 2000 万元,其中环保投资 5 万元,占总投资的 0.25%

2.4 建设内容

2.4.1 项目组成

主体工程: 在厂区现有厂房内的空置区域扩建 1 条 3100 吨高端智能挤压生产线,生产线配置加热炉、热剪机、挤压机、模具炉、时效炉等设施设备,设计生产规模为年产铝合金型材 5600 吨/年。

辅助工程:依托现有工程的办公楼、食堂、门卫室等,在厂房内新建配电室。

储运工程:新建铝棒堆放区、成品库房,并依托现有工程的工业氢氧化钠堆放区(现有工程设有模具碱煮及清洗区)、液氨存放区。

公用工程: 依托厂区内现有的给水、排水系统等,同时配套建设冷却塔等设施设备。

环保工程: 依托现有工程的污水处理站、生化池、一般固废物暂存间、危险废物贮存点、生活垃圾收集桶等。

拟建项目组成详见表 2.4-1。

	表 2	2.4-1 项目组成一览表		
类别	项目名称	建设内容及规模	备	
		在 3#挤压车间的南侧布置 1 条 3100 吨高		
主体	 铝合金型材挤压生产	端智能挤压生产线,生产线配置加热炉、		
工程	知音金型材价压生厂 线	热剪机、挤压机、模具炉、时效炉等设施	弟	
上任	(设备,设计小时产能约为1.4t/h,年设计		
		产能为 5600t/a		
	五八生活豆	依托公司现有 3F 办公楼, 建筑面积	H	
	办公生活区	1050m ²	包	
	食堂	依托现有 1F 食堂,建筑面积 450m²	包	
辅助	维修房	依托现有设施(维修区)进行维护保养	亿	
工程	修模房	依托现有修模房,用于模具的打磨、焊接 等	依	
	配电室	1F,在 3#挤压车间内新建 1 间配电室,	親	
	γ1 TI ⇔	建筑面积约 96m²	I-i	
	门卫室	依托厂区现有 1F 门卫室,建筑面积 10m²	包	
	加基份社员	位于挤压生产线的西侧,面积约 200㎡,	4	
	铝棒堆放区	主要用于堆放铝棒,预计最大堆放量约	新	
		300t		
	成品库房	位于挤压生产线的西侧,面积约 300m²,	並	
		主要用于成品的堆放,预计最大堆放量约 280t	:约 新	
储运		2001 现有工程设有模具碱煮及清洗区,依托现		
工程	工业氢氧化钠堆放区	有工程设置的工业氢氧化钠堆放区	亿	
		现有工程厂区设有液氨存放区,液氨为直		
		接外购的 400kg/罐的高压液氨钢瓶,厂区		
	 液氨存放区	最大存放量为4瓶,本次依托现有工程设	 依	
	似数付水区	置的液氨存放区,本次仅增加液氨的使用	"	
		量,厂区液氨贮存能力不变		
	给水	依托厂区现有供水管网	兌	
		用电由园区配电网供给,配电室内设变压		
	供电	器	新	
	供气	项目所需天然气供应来自园区供气管网	亲	
/\ III		采用雨污分流制,雨水排至园区市政雨水		
公用		管网;生产废水经厂区现有污水处理站处		
工程	排水	理、食堂废水经隔油池隔油处理后与生活	依托	
		污水一并进入厂区生化池处理, 处理后的		
		废水排入园区污水管网		
	冷却塔	新增1台冷却塔,为生产工序提供循环冷	立	
	校型培	却水	新	

				1
		加热炉天然 气燃烧废气	车间内以无组织形式排放(直排)	新建
		时效炉天然 气燃烧废气	车间内以无组织形式排放(直排)	新建
		焊接烟尘 (模具检修)	依托现有工程,无组织排放	依托
	废气	打磨粉尘 (模具检修)	依托现有工程,无组织排放	依托
		氮化炉废气	依托现有工程已建的氮化炉, 废气经水吸	依托
		(模具检修)	收后直接排放	
		食堂油烟	依托厂区现有食堂,食堂油烟经油烟净化器处理后,通过1根专用烟道引至楼顶排放	依托
	//2/11	食堂废水及 生活污水	依托现有工程的隔油池以及生化池(设计处理能力为80m³/d),食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理后,经园区污水管网进入龙桥工业园区污水处理厂处理达标后排放	依托
工程		生产废水	依托现有工程的污水处理站(设计处理能力为1200m³/d)处理,工艺为:酸碱中和+格栅井+集水池+化学混凝池+沉淀池+排水池;生产废水经厂区现有污水处理站处理后,经园区污水管网进入龙桥工业园区污水处理厂处理达标后排放	依托
	噪声		选用低噪声设备、建筑隔声、基础减振等	新建
	固体废物	一般工业固体废物	依托现有工程设置的一般工业固体废物 暂存点,位于厂区西侧,建筑面积约50m², 满足防渗漏、防雨淋、防扬尘等要求	依托
		危险废物	依托现有工程设置的危险废物贮存点,位于厂区北侧,建筑面积约20m²,采取了"防风、防晒、防雨、防漏、防渗、防腐"等措施,设有标识牌	依托
		生活垃圾	厂区设置有生活垃圾收集桶,生活垃圾收 集后交由环卫部门处理	依托
	环境风险防范措施		依托现有工程设置的危险废物贮存点,危险废物贮存点地面采取了重点防渗措施并执行《危险废物贮存污染控制标准》(GB18597-2023)的储存要求;室内设置	依托

有导流沟及集液池,可有效防止泄漏时物质外溢。液氨存放区设有围堰,液氨储罐周围配有喷淋装置和氨气报警装置、灭火器等设施;厂区配备有应急物资;厂区最高处设置有风向标,便于氨泄漏时人员向上风向撤离,设置有安全疏散指示标志;按要求编制了应急预案,平时定期组织单位人员开展了应急演练并对液氨存放区进行巡检,加强管理

2.4.2 依托设施可行性分析

本次扩建工程将依托厂区部分已建设施,依托可行性分析详见表 2.4-2。

表 2.4-2 依托设施可行性分析一览表

类别	依托设施	可行性分析		
主体工程	生产车间	生产车间已建成,车间内部分区域为空置区,根据生产 设备布置情况,可满足生产需求,依托可行		
	办公生活区	办公楼已建成,可满足办公需求,依托可行		
	食堂	食堂已建成,可满足员工就餐需求,依托可行		
辅助	维修房	由于厂区仅进行简单维修,维修量少,可满足厂区设备 维护保养需求,依托可行		
工程	修模房	由于模具维修量较少,修模房可满足厂区模具维修需 求,依托可行		
	门卫室	门卫室已建成,可满足厂区进出需求,依托可行		
	工业氢氧化	现有工程设有模具碱煮及清洗区,并配套设有工业氢氧		
	钠堆放区	化钠堆放区,依托可行		
储运 工程	液氨存放区	现有工程厂区设有液氨存放区,液氨为直接外购的400kg/罐的高压液氨钢瓶,厂区最大存放量为4瓶,本次依托现有工程设置的液氨存放区,本次仅增加液氨的使用量,厂区液氨贮存能力不变,模具维修量少,且现有工程设置的液氨存放区风险防范措施完善,可依托		
公用	给水	厂区给水管网与市政设施已接通,依托可行		
工程	排水	厂区内建有完善的排水系统,依托可行		
环保 工程	氮化炉废气	现有工程设有氮化炉(总共有2台,一用一备),拟建项目模具检修依托现有工程已建的氮化炉,现有工程的氮化炉可满足其检修要求,且氮化炉已通过环保验收,依托可行		
	食堂油烟	食堂设有油烟净化器,根据建设单位对食堂油烟监测结 果可知,食堂油烟可达标排放,依托可行		

_	
生产废水	现有工程污水处理站设计处理能力为 1200m³/d,目前接纳废水量约 198.6m³/d,剩余处理能力为 1001.4m³/d,本次依托现有工程模具碱煮及清洗区对模具进行脱模处理,生产废水(挤压模具碱煮及清洗废水)产生总量为 2.25m³/d,废水水质与原厂区废水水质一致,污水处理
	站运行良好,出水水质可达标排放,依托可行 现有工程食堂设有隔油池及生化池,生化池设计处理能 力为80m³/d,目前接纳废水量约42.16m³/d,剩余处理
食堂废水及 生活污水	能力为 37.84m³/d, 拟建废水排放量为 0.72m³/d, 废水排放水质与现有工程一致, 生化池出水水质可达标排放, 依托可行
生活垃圾	厂区设置有生活垃圾收集桶,依托可行
一般工业固体废物	现有工程设置有一般工业固体废物暂存点,建筑面积约 50m²,满足防渗漏、防雨淋、防扬尘等要求,一般工业 固体废物种类未发生变化,产生量有所增加,缩短转运 周期,可满足扩建后一般工业固体废物暂存需求,依托 可行
危险废物	现有工程设置有危险废物贮存点,建筑面积约 20m²,采取了"防风、防晒、防雨、防漏、防渗、防腐"等措施,设有标识牌,满足危险废物储存相关要求,产生量有所增加,缩短转运周期,可满足扩建后危废暂存需求,依托可行

2.4.3 主要产品及产能

拟建项目实施后产品为铝合金型材,其产品方案见表 2.4-3;项目扩建完成后,全厂产品方案见表 2.4-4。

表 2.4-3 拟建项目产品方案一览表

产品名称	规格	设计产量(t/a)
铝合金型材	非标	5600

表 2.4-4 扩建完成后全厂产品方案一览表

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	रे 🗆 हा स्ट	设计生产能力(t/a)		
序号	产品名称	扩建前产能	扩建完成后全厂产能	
1	太阳能产品铝制零组件	10000	10000	
2	铝制环保节能门窗型材	5000	5000	
3	高端木纹家装用装饰铝型材	5000	5000	
4	铝型材坯料	13500	13500	
5	喷塑铝型材	9000	9000	
6	高端木纹铝型材	1000	1000	
7	铝合金型材	0	5600	

2.4.4 主要生产设备

拟建项目新增设备详见表 2.4-5。

表 2.4-5 拟建项目新增主要生产设备一览表

			W 🗆	
序	设备名称	主要技术(性能)指标或规格/型号	数量	备注
号			(台/套)	
		炉型:长棒单棒加热炉;使用燃料:		
1	单棒加热炉	天然气;正常使用加热温度:460℃~	1	/
		520℃;最高加热温度:550℃		
2	单棒热剪机	Ф305	1	/
	+++++-	水平速度最大 30m/min; 竖直速度最	1	,
3	热棒机械手	大 15m/min	1	/
	45MN 卧式正向	工作压力: 28MPa; 挤压速度: 0.2~	1	,
4	挤压机	22mm/s; 挤压筒内径: Φ318mm	1	/
5	模具炉	4 腔	1	/
6	模具吊	2t	1	/
7	冷床	宽度约 10m; 冷床级数: 四级传动	1	/
8	淬火系统	有效长度约 8m	1	/
9	加强风冷系统	有效长度约 6m	1	/
		可调牵引力: 10kg~300kg; 夹持范		
10	牵引机	围:最大宽度 450mm,最大高度	1	/
		330mm		
	. I . Nor Att	切割范围:最大宽度 450mm,最大	_	,
11	中断锯	高度 330mm	1	/
1.0	*7 -1- 74	拉伸力: 270t; 拉伸范围: 6~32m;	1	,
12	拉直机	拉伸行程: 1200mm	1	/
12		切割范围:最大宽度 1200mm,最大	1	,
13	定尺锯	高度 330mm; 定尺精度: 0~2mm	1	/
14	时效炉	/	1	/
1.5	<u></u>	3t	1	/
15	行车 	16t	1	/
16	冷却塔	75t	1	/
	→ 1 H77 // → 11 / 1.14			

对照《产业结构调整指导目录(2024年本)》、《部分工业行业淘汰落后生产工艺装备和产品指导目录(2010年本)》工信部工产业(2010年第 122号),拟建项目所用设备不属于淘汰落后设备。

2.4.5 主要原辅材料名称及能源消耗量

拟建项目主要原辅材料及能源消耗详见表 2.4-6, 使用的原辅料理化

性质见表 2.4-7~表 2.4-8; 扩建前后原辅料变化情况详见表 2.4-9。

表 2.4-6 拟建项目主要原辅材料及能源消耗一览表

序 号	名称	年用量	最大贮存 量	备注
1	铝棒	6588t/a	300t	由铝厂提供,可直接用于 挤压
2	工业用氢氧化钠	5.6t/a	1t	袋装,用于模具碱煮工序
3	液氨	0.85t/a	1.6t	钢瓶贮存
4	切削液	0.5t/a	0.1t	用于定尺锯润滑,不需进 行调配
5	包装材料	8.5t/a	2t	用于产品包装
6	焊条	8.5kg/a	2kg	外购
7	水	$8010 \text{m}^3/\text{a}$	/	市政供水
8	电	557.51 万 kw•h/a	/	市政供电
9	天然气	38.32 万 m³/a	/	市政天然气供气管网

备注: 厂区内最大存放量为 4 瓶,液氨为直接外购的 400kg/罐的高压液氨钢瓶,厂区液氨存放区最大贮存量为 1.6t。拟建项目依托现有工程设置的液氨存放区,本次仅增加液氨的使用量,厂区液氨贮存能力不变。

表 2.4-7 片碱理化性质一览表

	中文名	: 氢氧化铂	纳;烧碱;苛性	钠	危险货物编号:	82001		
标识	英文名: Sodiun hydroxide; Caustic soda; Sodiun hydrate				UN 编号: 1	823		
	分子式:	NaOH	分子量: 4	40.01	CAS 号: 1310)-73-2		
	外观与性状		白色不透	明固体,	易潮解。			
エ田イレ	熔点 (℃)	318.4	相对密度(水	2.12	相对密度(空气	,		
理化	かは (で)	318.4	=1)	2.12	=1)	/		
性质	沸点 (℃)	1390	饱和蒸气压((kPa)	0.13/739°0	C		
	溶解性		易溶于水、乙醇、甘油,不溶于丙酮。					
	侵入途径		支吸收。					
	毒性	LD50: 无资料; LC50: 无资料						
		本品有强烈刺激和腐蚀性。粉尘或烟雾刺激眼和呼吸道,						
丰州	健康危害	腐蚀鼻中隔;皮肤和眼直接接触可引起灼伤;误服可造成						
毒性		消化道灼伤,粘膜糜烂、出血和休克。						
及健 康危		皮肤接触: 立即用水冲洗至少 15 分钟。若有灼伤, 就医治						
		疗。眼睛接触:立即提起眼睑,用流动清水或生理盐水冲						
古	与北 子沙	洗至少1	5 分钟。或用 3%	6硼酸溶剂	夜冲洗。就医。吸	入: 迅		
	急救方法	速脱离现]场至空气新鲜处	上。必要1	寸进行人工呼吸。	就医。		
		食入: 患	者清醒时立即潮	大口, 口月	 	汁,就		
		医						

	燃烧性	不燃	燃烧分解物		可能产生有害的毒性 雾。	
	闪点(℃)	ξ(°C) /		限(v%)		/
	引燃温度 (℃)	/	爆炸下	爆炸下限(v%)		/
	危险特性	并放出易燃	口反应并放热。遇潮时对铝、锌和锡有腐蚀性, 品爆的氢气。本品不会燃烧, 遇水和水蒸气大 腐蚀性溶液。具有强腐蚀性。			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
燃烧	建规火险分		稳定性			不聚合
爆炸	禁忌物	强酸、易	燃或可燃物、二氧化碳、过氧化物、水。			
性	储运条件与泄漏处理	应与易燃或可防止包装和容漏污染区,原面具,穿化等子收集于干燥调节至中性,	可燃物及酸容器损坏。 問围设警告 之防护服。 操净洁有盖 再放入房	後类分开存成 雨天不宜成 后标志,建设 不要直接持 不要容器中, 意水系统。也	效。搬运时	(防潮和雨淋。 应轻装轻卸, 放理: 隔离泄 人员戴好防毒 人员戴好防毒 人人黄素,的铲 入大量水中, 工量水冲洗,经 工集回收或无害
	灭火方法	用水、砂土扌	卜救,但须	防止物品退	B 水产生飞	溅,造成灼伤。

表 2.4-8 液氨理化性质一览表

	中	文名: 氨(液化的); 液氨			危险货物编号: 23003			
4=.>=	英文名	Luquid	d ammonia; am	UN 编号: 1005				
标识	分子式: NH ₃	分子量: 17.03			CAS 号: 7664-41-7			
	外观与性 状		无色有刺激性恶臭气体。					
理化性质	熔点 (℃)	-77.7	-77.7 相对密度(水 =1) 0.82		相对密度 (空气 =1)	0.6		
	沸点 (℃)	-33.5 饱和蒸汽压(kpa)			506.62/4.7°C			
	溶解性		易溶于	水、乙醇、	乙醚。			
	接触限值		PC-S	STEL: 30mg	g/m³			
毒性	侵入途径			吸入				
及健康危	毒性	LD50:350mg/kg (大鼠经口); LC50:1390mg/m³, 4 小时, 鼠吸入)						
害	健康危害	急性中華	毒:轻度者出现》	流泪、咽痛、	度可造成组织溶解 ^均 声音嘶哑、咳嗽、 水肿;胸部 X 线征	咯痰		

		呼吸困邓严重者可烈咳嗽、克等。可	准、紫 可发生 略大 丁发生 足反射	绀;胸部之中毒性肺力量粉红色泡候头水肿或性呼吸停山	图炎。中度中 X 线征象符合 《肿,或有呼 【沫痰、呼吸 【支气管粘膜 上。液氨或高	合肺炎或间层 吸窘迫综合 窘迫、谵妄 坏死脱落室	质性肺炎。 征,患者剧 、昏迷、休 息。高浓度
	急救方法	动清水作流动清水流动清水	切底冲: 水或生: 离现场	洗。就医。 理盐水彻底 至空气新鲜	后染的衣着, 眼睛接触: 民冲洗至少 1 样处。保持呼吸 工即进行人工	立即提起眼 5分钟。就[及道通畅。如	脸,用大量 医。吸入: I呼吸困难,
	燃烧性	易燃		燃烧分	解物	氧化	氮、氨
	闪点 (℃)	/		爆炸上限	(v%)	2	27.4
	引燃温度 (℃)	651		爆炸下限	(v%)	1	.5.7
	危险特性	爆炸。与容器内层 乙醛、同	与空气混合能形成爆炸性混合物。遇明火、高热能引起燃烧爆炸。与氟、氯等接触会发生剧烈的化学反应。若遇高热,容器内压增大,有开裂和爆炸的危险。不能与下列物质共存: 乙醛、丙烯醛、硼、卤素、环氧乙烷、次氯酸、硝酸、汞、氯化银、硫、锑、双氧水等。				
	建规火险 分级	Z		稳定性	稳定	聚合危 害	不聚合
	禁忌物		 卤素	、酰基氯、	酸类、氯仿	方、强氧化剂	FIJ
	E À	储运条件:储存于阴凉、干燥、通风仓间内。远离火种、热源。防止阳光直射。应与卤素(氟、氯、溴)、酸类分开石放。搬运时要轻装轻卸,防止钢瓶或附件损坏。平时检查铁瓶漏气情况。搬运时穿戴全身防护服(橡皮手套、围裙、件学面罩)。采用钢瓶运输时必须戴好钢瓶上的安全帽。钢料一般平放,并应将瓶口朝同一方向,不可交叉;高度不得起过车辆的防护栏板,并用三角木垫卡牢,防止滚动。泄漏处理:迅速撤离泄漏污染区人员至上风处,并立即进行隔离150米,严格限制出入,切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。合理通风加速扩散。高浓度泄漏区,喷含盐酸的雾状水中和、稀释溶解。构筑围堤或挖坑收容产生的大量废水。如有可能,将残余气或漏出气用排风机送至水洗塔或与塔相连的通风机			酸平、全高动即理合和、分检裙。不泄行员理 稀,开查、钢得漏隔戴风释、能有钢化瓶超处离自,、将		
	灭火方法	切断气测可能的证	原,则 舌将容	不允许熄刃	5火防毒服。 区正在燃烧的 8至空旷处。 こ。	气体。喷水	(冷却容器,

	表 2.4-9 扩建前后原辅料变化情况一览表					
序号	名称	现有工程用量	扩建工程用 量	扩建完成后 用量	变化量	
1	铝棒	47710t/a	6588t/a	54298t/a	+6588t/a	
2	硫酸	30t/a	0	30t/a	0	
3	工业用氢氧 化钠	60t/a	5.6t/a	65.6t/a	+5.6t/a	
4	塑粉	165t/a	0	165t/a	0	
5	封孔剂	0.5t/a	0	0.5t/a	0	
6	乳化液	0.2t/a	0	0.2t/a	0	
7	切削液	0	0.5t/a	0.5t/a	+0.5t/a	
8	木纹转印纸	24 万 m	0	24 万 m	0	
9	高温膜	21.6t/a	0	21.6t/a	0	
10	包装材料	285t/a	8.5t/a	293.5t/a	+8.5t/a	
11	液氨	4.34t/a	0.85t/a	5.19t/a	+0.85t/a	
12	焊条	30kg/a	8.5kg/a	38.5kg/a	+8.5kg/a	
13	天然气	340.025 万 m³/a	38.32 万 m³/a	378.345 万 m³/a	+38.32 万 m³/a	
14	新鲜水用水 量	23.3032 万 m³/a	0.801 万 m³/a	24.1042 万 m³/a	+0.801 万 m³/a	
15	电	2059.5 万 kw •h/a	557.51 万	2617.01 万	+557.51	

2.4.6 公用工程

2.4.6.1 给水

拟建项目生产、生活用水由市政自来水管网引入。

拟建项目新增员工就餐依托现有工程设置的食堂,项目不提供住宿。 拟建项目用水主要包括挤压模具碱煮及清洗用水、冷却塔用水、淬 火冷却喷雾用水、食堂用水以及生活用水。

kw • h/a

万 kw •h/a

kw • h/a

(1) 挤压模具碱煮及清洗用水

类比现有工程挤压模具碱煮及清洗用水情况,拟建项目挤压模具碱煮及清洗用水量约 2.5m³/d(750m³/a),排污系数按 0.9 计,则挤压模具碱煮及清洗废水产生量约为 2.25m³/d(675m³/a)。

(2) 冷却塔用水

拟建项目生产设备需用水进行间接冷却,冷却用水循环利用,定期补充,总循环水量为75t/h,类比现有工程情况,补充水量约占循环水量

的 2%, 则冷却塔用水量为 20m³/d (6000m³/a)。

(3) 淬火冷却喷雾用水

拟建项目型材出模后会采用水雾进行急剧冷却,冷却水循环使用, 定期补充,类比现有工程情况,补水量约 3.4m³/d(1020m³/a)。

(4) 食堂用水

拟建项目新增劳动定员 10 人,食堂用水量按 40L/人·d 计算,则食堂用水量为 $0.4m^3/d$ ($120m^3/a$),排污系数按 0.9 计,食堂废水产生量为 $0.36m^3/d$ ($108m^3/a$)。

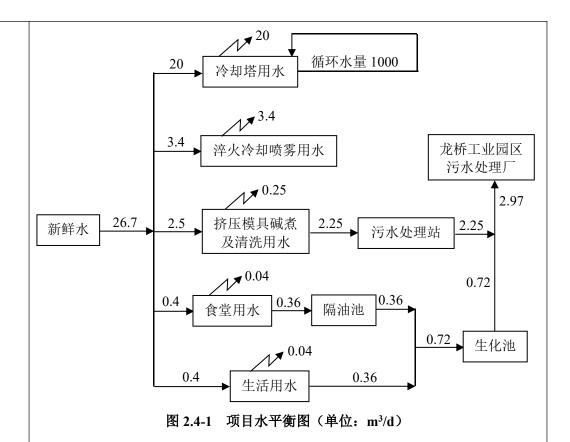
(5) 生活用水

拟建项目新增劳动定员 10 人,生活用水量按每人 40L/d 计算,则员工生活用水量为 0.4m³/d(120m³/a),排污系数按 0.9 计,生活污水产生量为 0.36m³/d(108m³/a)。

拟建项目用水、排水情况见表 2.4-10。

表 2.4-10	项目用水、	排水情况-	-览表

序号	ta sha	+111 +44	用水量		用水量 用水量		北小 石粉	排水量		排放去向	
	名 称	规模	用水标准	m ³ /d	m ³ /a	排水系数	m ³ /d	m ³ /a	排放去門		
1	冷却塔用水	循环水量 75t/h	占循环水量的 2%	20	6000	/	0	0	循环使用		
2	淬火冷却喷雾用水	/	3.4m³/d	3.4	1020	/	0	0	循环使用		
3	挤压模具碱煮及清洗用水	/	2.5m ³ /d	2.5	750	0.9	2.25	675	污水处理站		
4	食堂用水	10 人	40 L/人·d	0.4	120	0.9	0.36	108	隔油池+生化池		
5	生活用水	10 人	40 L/人·d	0.4	120	0.9	0.36	108	生化池		
合计		/	/	26.7	8010	/	2.97	891	/		


备注:由于模具维修氮化炉废气处理废水产生量极少,本次评价不对其进行统计分析。

建设内容

设 2.4.6.2 排水

拟建项目排水采取雨污分流制。雨水排至园区市政雨水管网,挤压模具碱煮及清洗废水经厂区现有污水处理站处理达《污水综合排放标准》(GB8978-1996)三级标准后、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理达《污水综合排放标准》(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂处理达《化工园区主要水污染物排放标准》(DB50/457-2012)中表 1 的规定(其中 COD 执行 60mg/L,未规定的指标执行《污水综合排放标准》(GB8978-1996)一级标准),尾水最终排入长江。

拟建项目给水、排水平衡示意图见图 2.4-1。

建设

内容

2.4.6.3 供电

拟建项目设1间配电室,供电由园区配电网供给。

2.4.7 劳动定员及工作制度

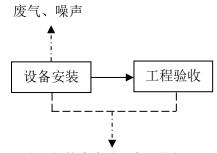
劳动定员:新增人员10人

工作制度:项目全年生产300天,每天2班,每班8小时。

2.4.8 厂区平面布置

拟建项目在厂区现有厂房实施扩建,主要在3#挤压车间的南侧扩建1条3100吨高端智能挤压生产线,新增加热炉、热剪机、挤压机、模具炉、时效炉等设施设备。

铝棒堆放区及成品库房紧邻生产线布置,方便生产及成品的贮存,可减少产品运输距离。依托的污水处理站位于厂区西侧;依托的生化池位于办公楼的西北侧;依托的一般工业固体废物暂存点位于厂区西侧;依托的危险废物贮存点位于厂区北侧;生活区依托现有工程,厂区设有1个出入口,位于厂区南侧,紧邻茶涪路,方便原辅材料及产品的运输。


生产区与生活办公区分开布置,方便生产和管理,人流物流分开。 项目平面布置充分考虑了各生产工序的流畅,以及半成品、产品的物流 顺畅,平面布置较为合理。项目总平面布置图见附图 2。

2.5 工艺流程和产排污环节

2.5.1 施工期主要工艺流程及产排污环节

2.5.1.1 施工流程

拟建项目施工期施工工艺流程及产污环节详见图 2.5-1。

生活污水、包装废弃物、生活垃圾

图 2.5-1 施工工艺流程及产污环节图

2.5.1.2 施工期产污环节

拟建项目施工期产污环节见表 2.5-1。

表 2.5-1 施工期产污环节表

工流和排环

类别	污染源		
废气	施工燃油废气(各种燃油动力机械)		
废水	生活污水(施工人员)		
噪声	施工机械设备噪声		
固体废物	包装废弃物、生活垃圾(施工人员)		

2.5.2 运营期主要工艺流程及产排污环节

2.5.2.1 铝合金型材生产工艺流程

本次扩建仅在厂区现有厂房内建设 1 条 3100 吨高端智能挤压生产 线,原料为外购铝棒,经挤压生产线生产的产品为铝合金型材,作为产 品外售,其生产工艺流程及产污节点见图 2.5-2。

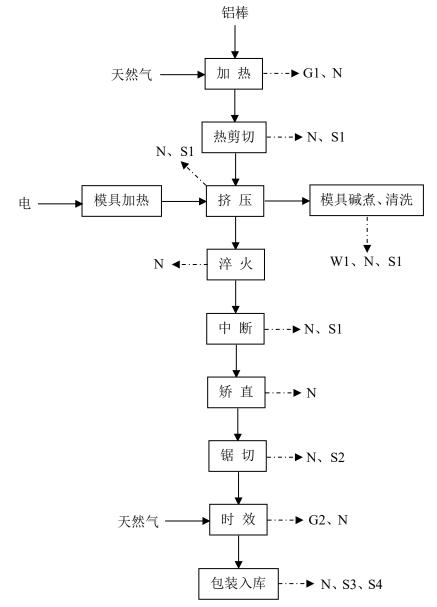


图 2.5-2 铝合金型材生产工艺流程及产污环节图

铝合金型材生产工艺流程简述:

(1) 加热

该过程为物理过程。铝棒通过单棒加热炉进行加热处理,使铝棒受热变软,便于挤压加工,温度控制在 450~560℃之间。单棒加热炉使用天然气作为燃料。

产污环节:加热炉天然气燃烧废气 G1 及噪声 N。

(2) 热剪切

加热后的铝棒按型材壁厚、校直、定尺等要求综合计算所需长度,最终由热剪机剪切成适合挤压机挤压的尺寸规格。

产污环节:热剪切过程中产生的废边角料 S1 及噪声 N。

(3) 模具加热

在挤压过程中为了保证铝材组织、性能的均匀性,需对模具进行加热,保证模具和铝棒的温度相差不大,防止热棒冷模具相遇损坏模具,确保挤压的顺利进行。

根据生产计划选用相应规格的模具,将模具送入模具炉进行加热, 采取电加热方式。

(4) 挤压

挤压筒预热:挤压筒应保持清洁干净,采取电加热方式进行预热,满足加工温度后方可投入生产。

挤压成型:采用热棒机械手将加热后的铝棒送至挤压机上料位,由 挤压杆推进挤压筒(电加热)进行加热软化,软化后进入模具,通过挤 压机对模具模腔中的金属坯料施加压力,使之产生塑性变形,以获得所 需形状、尺寸的工件。

产污环节: 挤压过程中产生的废边角料 S1 及噪声 N。

(5) 模具碱煮及清洗

铝材挤压后将有部分铝块残留于模具内,影响模具的正常使用。拟 建项目模具碱煮工序依托现有工程,利用氢氧化钠溶液对模具进行脱模 处理,氢氧化钠与铝反应除去模具中的残铝,其主要反应式如下:

 $Al_2O_3+2NaOH \rightarrow 2NaAlO_2+H_2O$

 $2A1+2NaOH+2H_2O=2NaAlO_2+3H_2\uparrow$

模具中的残铝因腐蚀而出现松动,以达到将模具内残留的废铝清除。 碱煮工序完成后,人工将模具工作腔内的残铝(即废边角料)取出, 然后对模具进行清洗,模具清洗干净后送回车间检修后继续使用。

产污环节:挤压模具碱煮及清洗过程中会产生废水 W1、废边角料 S1 及噪声 N。

(6) 淬火

根据所生产型材所需的硬度、强度、耐磨性等特点选择淬火速度。 拟建项目挤压时采用喷雾/风冷淬火热处理/冷床风冷冷却方法,淬冷介质 为空气/水,冷却风机为挤压机/冷床的配套风机。型材出模后用风或水雾进行急剧冷却,冷却速度保持在 150℃/min 以上,冷却到 200℃以下,时间应不超过 3min。

产污环节:淬火过程中水雾挥发,生产过程中无废水产生,运行过程中会产生的噪声 N。

(7) 中断

在淬火后,使用中断锯在特定的长度处中断型材,以便进行矫直处理。

产污环节:中断过程中产生的废边角料 S1 及噪声 N。

(8) 矫直

采用拉直机对中断后的铝型材进行拉伸矫直。拉伸矫直是使铝型材在张力作用下产生轻微塑性变形而实现矫直,张力矫直除了可以使制品消除纵向形状不整外,还可以减少其残余应力,提高强度特性并能保持其良好的表面。

产污环节: 矫直过程中产生的噪声 N。

(9) 锯切

锯切是依据客户要求将铝材切割成一定长度的型材工序。锯切前应 首先确定型材的定尺长度,校核定尺,锯切时应保持台面清洁。

定尺锯配备有电磁阀,在锯切过程中,电磁阀会控制锯片切削液的喷射,微量切削液通过喷嘴喷至刀片上,提高平滑度,减少毛刺。该过程基本无废切削液产生。

产污环节: 锯切过程中产生的含切削液的铝屑 S2 及噪声 N。

(10) 时效

为增强型材强度和硬度,需对其进行时效处理。将锯切好尺寸的铝合金型材送入时效炉内进行时效,时效炉温度保持在200~210℃,保温时间为7h,保温时间到达后,打开炉门将型材拖出炉外自然冷却,使铝合金型材达到使用要求。时效炉使用天然气作为燃料。

产污环节: 时效炉天然气燃烧废气 G2 及噪声 N。

(11) 成品入库

铝合金型材经自然冷却后进行人工检验,合格品经包装后入库待售。 产污环节:检验过程中产生不合格产品 S3、包装过程中产生的废包 装材料 S4。

2.5.2.2 模具检修

拟建项目挤压过程使用的模具需要定期进行检修,模具的检修依托 现有工程已建设施,主要工序为焊接、打磨、渗氮,其检修工艺流程及 产污节点见图 2.5-3。

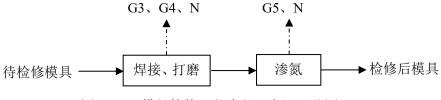


图 2.5-3 模具检修工艺流程及产污环节图

模具检修工艺流程简述:

拟建项目挤压过程使用的模具需要定期进行检修,主要工序为焊接、 打磨、渗氮,渗氮使用氮化炉。

模具送到氮化炉内,温度最高为 600℃,氮化炉采用电加热,通入氨气进行渗氮处理,拟建项目依托现有工程设置的液氨罐(仅增加液氨的使用量,厂区液氨贮存能力不变),氨气通过密闭管道送入氮化炉内,氨气热分解成活性氮原子,不断吸附到工件表面,并扩散渗入工件表层内,从而改变表层的化学成分和组织,获得优良的表面性能。渗氮工艺持续8~24h,经渗氮处理的模具具有优越的耐磨性、耐疲劳性、耐蚀性及高温的特性。渗氮完成后打开氮化炉阀门,通入空气,将炉内废气排出。

渗氮好的模具送至挤压生产线继续使用。

拟建项目模具检修工序依托现有工程已建的氮化炉(厂区总共设有 2 台氮化炉, 1 用一备)。

产污环节:焊接过程中产生的焊接烟尘 G3、打磨过程中产生的打磨 粉尘 G4、渗氮结束后产生的尾气 G5 及噪声 N。

2.5.2.3 其他污染工序及产排污环节分析

(1) 废气

现有工程设有食堂, 拟建项目新增人员依托现有工程食堂进行就餐,

食堂运营过程中会产生食堂油烟 G6。

(2) 废水

现有工程设有食堂,新增人员依托现有工程食堂进行就餐,食堂运营过程中会产生食堂废水 W2;办公生活过程中会产生生活污水 W3。

(3) 固体废物

拟建项目依托现有工程设置的维修房进行维护、保养,设备维护、保养过程中会产生废零部件 S5、废矿物油及废油桶 S6、含油废棉纱手套 S7;员工办公生活过程中会产生生活垃圾 S8。

2.5.2.4 产污环节分析

根据生产工艺及产污环节分析,拟建项目产排污环节汇总情况见表 2.5-2。

表 2.5-2 拟建项目产排污环节汇总表

类别	编号	污染源	产污环节	主要污染物
	G1	加热炉天然气燃 烧废气	铝棒加热	颗粒物、SO ₂ 、NOx
	G2	时效炉天然气燃 烧废气	时效	颗粒物、SO ₂ 、NOx
废气	G3	焊接烟尘	焊接 (模具检修)	颗粒物
	G4 打磨粉尘		打磨 (模具检修)	颗粒物
	G5	氮化炉废气	渗氮 (模具检修)	NH ₃
	G6	食堂油烟	食堂	油烟、非甲烷总烃、臭气浓度
	W1	挤压模具碱煮及 清洗废水	模具碱煮及清 洗	pH、COD、SS、石油类
废水	W2	食堂废水	食堂	pH、COD、BOD5、SS、NH3-N、 动植物油
	W3	生活污水	办公生活	pH、COD、BOD5、SS、NH3-N
噪声	N	设备噪声	加热炉、热剪 炉、挤压机等	等效连续 A 声级
	S1	废边角料	热剪切、挤压、 模具碱煮、中断	/
固体	S2	含切削液的铝屑	锯切	/
废物	S3	不合格产品	包装入库	/
	S4	废包装材料	包装入库	/

	S5	废零部件	设备维护、保养	/
	S6	废矿物油及废油 桶	设备维护、保养	/
	S7	含油废棉纱手套	设备维护、保养	/
	S8	生活垃圾	办公生活	/

2.6 与项目有关的原有环境污染问题

2.6.1 现有工程环保手续履行情况

重庆南涪铝业有限公司成立于 2010 年 4 月,位于重庆市涪陵区龙桥 街道龙港大道 466 号(重庆涪陵工业园区龙桥组团石塔片区),主要从事 各种建筑铝型材、工业用铝型材及深度加工铝制品。

2010年7月5日,原重庆市涪陵区环境保护局对《年产50000t 高端铝型材项目一期工程环境影响报告书》做出了批复(渝(涪)环准[2010]123号),2015年10月15日,原重庆市涪陵区环境保护局对年产50000t高端铝型材项目一期工程竣工环境保护验收做出了批复(渝(涪)环验[2015]74号)。

2016年8月17日,原重庆市涪陵区环境保护局对《高端家装铝型材产品升级技改项目环境影响报告表》做出了批复(渝(涪)环准[2016]128号),2018年1月,重庆南涪铝业有限公司对高端家装铝型材产品升级技改项目实施了验收,并进行了备案。

2018年8月27日,原重庆市涪陵区环境保护局对《2万吨铝型材扩建项目一期工程环境影响报告表》做出了批复(渝(涪)环准[2018]70号),2019年12月,重庆南涪铝业有限公司对2万吨铝型材扩建项目一期工程实施了验收,并进行了备案。

2022年4月26日,重庆市涪陵区生态环境局对《挤压生产线升级技术改造项目环境影响报告表》做出了批复(渝(涪)环准[2022]021号), 2024年6月,重庆南涪铝业有限公司对挤压生产线升级技术改造项目实施了验收,并进行了备案。

2024年1月31日,重庆南涪铝业有限公司重新申请了排污许可证,证书编号: 91500102554080436D001Z(见附件),有效期限自2023年6月11日至2028年6月10日。

运营期间严格按照排污许可相关管理要求完成年度执行报告以及厂

区例行监测。
现有工程环保手续履行情况见表 2.6-1。

与项
目有
关的
原有
环境
污染
问题

表 2.6-1 现在	了工程环保手续属	覆行情况一览表
------------	----------	---------

序	 项目名称	产品方案 环评		不评	验收		夕沙	
号		名称	规模(t/a)	环评批复文号	环评批复时间	验收批复文号	验收批复时间	备注
	年产 50000t 高端铝	太阳能产品铝制零组件	10000	渝(涪)环准	2010年7月5日	渝 (涪) 环验	2015年10月	己验收
	型材项目一期工程	铝制环保节能门窗型材	5000	[2010]123 号	2010年7月5日	[2015]74 号	15 日	投产
	高端家装铝型材产	高端木纹家装用装饰铝	5000	渝 (涪) 环准	2016年8月17	人业会出	白 之 邓小屋	己验收
	品升级技改项目	型材	5000	[2016]128 号	日	企业完成自主验收		投产
		铝型材坯料	3500		2010年0日27			
3	2万吨铝型材扩建	喷塑铝型材			2018年8月27	企业完成自主验收		己验收
	项目一期工程 高端木纹铝型材 1000 [201		[2018]70 号	H L			投产	
	挤压生产线升级技	た口 丑川 ナナナズ 火川	10000	渝 (涪) 环准	2022年4月26	人业会出	户 → スク、ルム	己验收
	术改造项目	铝型材坯料	10000	[2022]021 号	日	12批元队	自主验收	投产

综上,建设单位履行了环境影响评价、竣工环境保护验收、排污许可手续等环保法律法规,污染防治措施基本落实,能够 实现污染物稳定达标排放。

2.6.2 现有工程产品方案

现有工程产品方案详见表 2.6-2。

表 2.5-2 现有工程产品方案一览表

序号	产品名称	单位	生产规模	备注
1	太阳能产品铝制零组件	t/a	10000	/
2	铝制环保节能门窗型材	t/a	5000	/
3	高端木纹家装用装饰铝型材	t/a	5000	/
4	铝型材坯料	t/a	13500	/
5	喷塑铝型材	t/a	9000	/
6	高端木纹铝型材	t/a	1000	/

2.6.3 现有工程污染物及污染防治措施

现有工程污染物及污染防治措施情况见表 2.6-3。

表 2.6-3 现有工程污染物及污染防治措施情况表

与目关原环污问项有的有境染题

类别	污染源	污染物	治理措施
	天然气燃烧 废气	颗粒物、SO ₂ 、NOx	车间内以无组织形式排放
	酸蚀及阳极 氧化废气	硫酸雾	硫酸雾吸收塔+15m 高排气筒(DA006)
	喷砂废气	颗粒物	布袋除尘器+喷淋水除尘+15m 高排气 筒(DA007)
	1#立式粉末 喷涂废气	颗粒物	旋风除尘+布袋除尘器+喷淋塔+15m 高排气筒(DA008)
	2#立式粉末 喷涂废气	颗粒物	旋风除尘+布袋除尘器+喷淋塔+15m 高排气筒(DA009)
	立式喷涂固	颗粒物、SO2、NOx、	喷淋塔+UV 光解+15m 高排气筒
	化废气	非甲烷总烃	(DA010)
废气	卧式粉末喷 涂废气	颗粒物	旋风除尘+布袋除尘器+喷淋塔+15m 高排气筒(DA011)
	1#卧式喷涂	颗粒物、SO2、NOx、	喷淋塔+UV 光解+15m 高排气筒
	固化废气	非甲烷总烃	(DA012)
	2#卧式喷涂	颗粒物、SO2、NOx、	喷淋塔+UV 光解+15m 高排气筒
	固化废气	非甲烷总烃	(DA013)
	前处理废气	氟化物	喷淋塔+15m 高排气筒(DA014)
	氮化炉废气	NH ₃	经水吸收处理后直接排放
	焊接烟尘	颗粒物	以无组织形式排放
	打磨粉尘	颗粒物	以无组织形式排放
	食堂油烟	油烟、非甲烷总烃、 臭气浓度	经油烟净化器处理后,通过1根专用 烟道引至楼顶排放

	含镍废水	总镍	经化学沉淀处理后排至厂区污水处理 站
废水	生产废水	pH、COD、SS、 NH3-N、石油类、 氟化物、总镍	生产废水经厂区污水处理站(设计处理能力为 1200m³/d)处理达《污水综合排放标准》(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂处理达标后排放;污水处理站处理工艺为:酸碱中和+格栅井+集水池+化学混凝池+沉淀池+排水池
	食堂废水及 生活污水	pH、COD、BOD5、 SS、NH3-N、动植 物油	食堂废水经隔油池隔油处理后与生活 污水一并进入厂区生化池(设计处理 能力为 80m³/d)处理达《污水综合排 放标准》(GB8978-1996)三级标准后, 经园区污水管网进入龙桥工业园区污 水处理厂处理达标后排放
噪声	生产设备	噪声	采取建筑隔声、设备基础减振及厂区 绿化等综合控制措施
	一般工业固体废物	废边角料及不合格 产品 废转印纸 废高温膜 废包装材料 废零部件	· 交由物资回收单位进行资源化利用
固体		污泥	运至处置场进行处置
废物		含乳化液的废金属屑	交由物资回收单位处理
	危险废物	废矿物油及废油桶 含油废棉纱手套 废树脂 含镍污泥	定期交由具备危险废物处理资质的单 位进行处置
	生活垃圾	生活垃圾	分类收集后交由环卫部门处理
环境厂	风险防范措施	防腐"等措施,室内体外溢;液氨存放区和氨气报警装置、灭便于氨泄漏时人员的志;厂区配备有应急期组织单位人员开展	了"防风、防晒、防雨、防漏、防渗、设置有导流沟及集液池,可有效防止液设有围堰,液氨储罐周围配有喷淋装置火器等设施;厂区最高处设置有风向标,向上风向撤离,设置有安全疏散指示标识物资;按要求编制了应急预案,平时定是了应急演练并对液氨存放区进行巡检,
		加强管理	

备注:根据排污许可证,因生产车间有行车运行,时效炉采用清洁能源天然气 为燃料,目前厂区天然气燃烧废气均以无组织形式排放。

2.6.4 现有工程污染物达标情况

现有工程已按照环评要求对各污染治理措施进行了建设,并通过了环保竣工验收。本次评价主要根据业主提供的监测资料(报告编号:

A2230112151105C、学润(监)[2024]第 01169 号、学润(监)[2024]第 01170 号)对现有污染源进行达标分析,具体如下:

2.6.4.1 废气

(1) 有组织废气

2023 年第三季度,建设单位委托重庆市华测检测技术有限公司对厂区有组织废气进行了监测(报告编号: A2230112151105C),其有组织废气监测结果见表 2.6-4。

表 2.6-4 有组织废气监测结果一览表

		监测	训结果	标准图	限值	排气筒	71.1-
污染源	污染物	浓度	速率	浓度	速率	高度	达标
		mg/m ³	kg/h	mg/m ³	kg/h	m	頂仉
DA006	硫酸雾	ND	ND /		1.5	15	达标
DA007	颗粒物	39.4~48.6	0.042~0.049	120	3.5	15	达标
DA008	颗粒物	ND	/	120	3.5	15	达标
DA009	颗粒物	ND	/	120	3.5	15	达标
	颗粒物	3.4~7.8	0.010~0.028	50	/		达标
	二氧化硫	ND	/	400	/		达标
DA010	氮氧化物	27~79	0.098~0.24	700	/	15	达标
	非甲烷总烃	1.35~1.66	$3.6 \times 10^{-3} \sim$ 5.3×10^{-3}	120	10		达标
DA011	颗粒物	2.6~7.8	0.016~0.054	120	3.5	15	达标
	颗粒物	2.2~2.6	$1.7 \times 10^{-3} \sim$ 2.1×10^{-3}	50	/		达标
D 4 012	二氧化硫	23~24	0.017~0.019	400	/	1.5	达标
DA012	氮氧化物	ND	/	700	/	15	达标
	非甲烷总烃	1.25~1.49	$9.9 \times 10^{-4} \sim$ 1.2×10^{-3}	120	10		达标
	颗粒物	2.2~12.3	$1.6 \times 10^{-3} \sim 8.5 \times 10^{-3}$	50	/		达标
DA013	二氧化硫	7~13	5.5×10 ⁻³ ~ 9.0×10 ⁻³	400	/	15	达标
	氮氧化物	ND~6	4.2×10^{-3}	700	/		达标
	非甲烷总烃	1.19~1.62	$8.5 \times 10^{-4} \sim$ 1.3×10^{-3}	120	10		达标

DA014	氟化物	0.11~0.15	$3.6 \times 10^{-4} \sim$ 6.1×10^{-4}	9	0.1	15	达标	
-------	-----	-----------	--	---	-----	----	----	--

备注:由于现有工程时效炉天然气燃烧废气均以无组织形式排放,因此,本次评价不再统计时效炉废气有组织废气监测结果;"ND"表示检测值小于方法检出限;"/"表示检测项目的实测浓度小于检出限,故排放速率不计算。

根据表 2.6-4 监测结果可知,现有工程废气经处理后外排废气满足《工业炉窑大气污染物排放标准》(DB50/659-2016)及《大气污染物综合排放标准》(DB50/418-2016)排放限值要求。

(2) 无组织废气

根据重庆市华测检测技术有限公司出具的检测报告(报告编号: A2230112151105C),其无组织废气监测结果见表 2.6-5。

表 2.6-5 无组织废气监测结果一览表

运轨通	污染源 监测点位		监测结果	标准限值	达标
/5 <i>条</i> /织	监测总型	污染物	mg/m ³	mg/m^3	情况
无组织废气		颗粒物	ND	1.0	达标
	无组织监测点	二氧化硫	0.009~0.011	0.40	达标
		氮氧化物	0.029~0.048	0.12	达标

根据表 2.6-5 监测结果可知,无组织排放监测点颗粒物、二氧化硫、 氮氧化物排放浓度满足《大气污染物综合排放标准》(DB50/418-2016)中 无组织排放监控浓度限值要求。

(3)食堂油烟

2024年1月27日,建设单位委托重庆学润检测技术有限公司对食堂油烟进行了监测(报告编号:学润(监)[2024]第01170号),其食堂油烟监测结果见表2.6-6。

与目关原环污项有的有境染

问题

表 2.6-6 食堂油烟监测结果一览表

	冷如河	此洞上	监测点位 监测项目		单位			监测结	果			岩 紫阳 传
	污染源	监侧总征	监侧书	八日	中1年	第一次	第二次	第三次	第四次	第五次	均值	标准限值
			烟气液		m/s	19.5	18.6	18.9	21.1	20.4	/	/
			烟气流	忙量	m ³ /h	3705	3521	3569	3944	3844	/	/
		油烟废气排放口		实测浓度	mg/m ³	0.3	0.4	0.3	0.3	0.3	/	/
	食堂油烟		油烟	排放浓度	mg/m ³	0.3	0.3	0.3	0.3	0.3	0.3	1.0
	艮圣佃畑			排放速率	kg/h	1.11×10^{-3}	1.41×10^{-3}	1.07×10^{-3}	1.18×10^{-3}	1.15×10^{-3}	/	/
				实测浓度	mg/m ³	0.65	0.94	0.71	/	0.70	/	/
		非甲烷总烃	排放浓度	mg/m ³	0.57	0.79	0.60	/	0.64	0.65	10.0	
			排放速率	kg/h	2.41×10^{-2}	3.31×10^{-2}	2.53×10^{-2}	/	2.69×10^{-2}	/	/	

根据表 2.6-6 监测结果可知,食堂油烟废气排放口排放的油烟、非甲烷总烃排放浓度满足《餐饮业大气污染物排放标准》 (DB50/859-2018)限值要求。

2.6.4.2 废水

(1) 生产废水

2023 年第三季度,建设单位委托重庆市华测检测技术有限公司对厂区生产废水进行了监测(报告编号: A2230112151105C),其生产废水监测结果见表 2.6-7。

表 2.6-7 生产废水监测结果一览表

监测点位	污染物	监测结果(平均值) 排放浓度(mg/L)	标准限值 (mg/L)	达标情况
	pH (无量纲)	8.0~8.1	6~9	达标
	COD	56~58	500	达标
	BOD_5	11.8~14.6	300	达标
污水处理站	SS	17~20	400	达标
排放口	NH ₃ -N	0.439~0.478	45	达标
	石油类	ND	20	达标
	氟化物	9.41~11.2	20	达标
	总镍	ND	1.0	达标
废水车间排 放口	总镍	0.151~0.188	1.0	达标

备注:"ND"表示检测值小于方法检出限。

根据表 2.6-7 监测结果可知,废水车间排放口总镍排放浓度满足《污水综合排放标准》(GB8978-1996)第一类污染物最高允许排放浓度限值;污水处理站排放口排放的废水中 pH、COD、BOD5、SS、石油类、氟化物排放浓度均满足《污水综合排放标准》(GB8978-1996)三级标准,氨氮满足参照执行的《污水排入城镇下水道水质标准》(GB/T31962-2015)B级标准。

(2) 生活污水

2024年2月2日~2月3日,建设单位委托重庆学润检测技术有限公司对食堂油烟进行了监测(报告编号:学润(监)[2024]第01169号),其生活污水监测结果见表 2.6-8。

与目关原环污问项有的有境染题

表 2.6-8	生活污水监测结果一	临寿
12 4.0-0		ルル

监测点位	污染物	监测结果(平均值) 排放浓度(mg/L)	标准限值 (mg/L)	达标情况
	pH (无量纲)	6.9~7.3	6~9	达标
	COD	166~177	500	达标
生化池排	BOD ₅	81.2~82.6	300	达标
放口	SS	68	400	达标
	NH ₃ -N	20.5~21.2	45	达标
	动植物油	1.66~1.85	100	达标

根据表 2.6-8 监测结果可知,生化池排放口排放的废水中 pH、COD、BOD₅、SS、动植物油排放浓度均满足《污水综合排放标准》(GB8978-1996) 三级标准,氨氮满足参照执行的《污水排入城镇下水道水质标准》 (GB/T31962-2015) B 级标准。

2.6.4.3 噪声

2024年2月2日~2月3日,建设单位委托重庆学润检测技术有限公司对厂区噪声进行了监测(报告编号:学润(监)[2024]第01169号),其噪声监测结果见表2.6-9。

表 2.6-9 厂界噪声监测结果一览表 单位: dB(A)

	监测	结果	标准限值		达标
监测点位	昼间	夜间	昼间	夜间	情况
南侧厂界外 1m 处 N1	62~63	52	70	55	达标
北侧厂界外 1m 处 N2	62~63	53~54	65	55	达标

根据表 2.6-9 监测结果可知,北侧厂界噪声监测点昼间、夜间监测结果满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准限值要求;南侧厂界噪声监测点昼间、夜间监测结果满足《工业企业厂界环境噪声排放标准》(GB12348-2008)4 类标准限值要求。

2.6.5 现有工程污染物排放情况汇总

现有工程污染物排放量统计根据其验收报告及业主提供的资料等进行统计,厂区现有工程污染物排放量统计情况见表 2.6-10。

表 2.6-10 现有工程污染物排放量统计表

类别	主要污染物	排放量(t/a)
	颗粒物	3.8239
	二氧化硫	1.4484
废气	氮氧化物	5.138
	氟化物	0.0098
	非甲烷总烃	0.1377
	COD	6.495
	NH ₃ -N	0.241
废水	石油类	0.015
	氟化物	0.05
	总镍	0.002
	一般工业固体废物	11821.11
固体废物	危险废物 (包括含乳化液的废金	0
(产生量)	属屑)	9
	生活垃圾	83.75

备注: 废水污染物排放量按项目排入环境的量进行统计。

2.6.6 现有工程存在的环境问题

2.6.6.1 投诉情况

经调查, 重庆南涪铝业有限公司近三年无环保相关投诉。

2.6.6.2 存在的主要环境问题

- (1)根据建设单位提供的监测资料(报告编号: A2230112151105C), 监测报告内容中环保措施描述情况存在与现场情况不相符的情况,环境管 理存在不足。
- (2)根据《国家危险废物名录》(2025年版),含乳化液的废金属屑属于危险废物,建设单位未单独收集处理,作为一般工业固体废物交由物资回收单位处理。

2.6.6.3 整改措施

- (1) 建设单位加强内部的环境管理工作。
- (2)现有工程产生的含乳化液的废金属屑单独收集,暂存于危险废物贮存点,定期交由危险废物处置资质的单位进行处置或交由有接受处理能力的金属冶炼企业进行豁免处置。

三、区域环境质量现状、环境保护目标及评价标准

3.1 区域环境质量现状

3.1.1 区域环境空气质量达标情况

日最大8h平均浓度的第90

百分位数

根据《重庆市人民政府关于印发重庆市环境空气质量功能区划分规定的通知》(渝府发[2016]19号)规定,拟建项目位于重庆市涪陵区,所在区域环境空气功能区为二类区,环境空气质量执行《环境空气质量标准》(GB3095-2012)二级标准。

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)要求,本次评价引用《2023年重庆市生态环境状况公报》中涪陵区的环境空气质量数据进行区域达标判定。区域环境空气质量现状评价见表 3.1-1。

现状浓度/ 标准值/ 占标率 达标 污染物 评价指标 (%)情况 $(\mu g/m^3)$ $(\mu g/m^3)$ $PM_{2.5}$ 41 35 117.1 超标 70 72.9 达标 PM_{10} 51 年平均质量浓度 SO_2 10 60 16.7 达标 NO_2 30 40 75.0 达标 CO 日均浓度的第95百分位数 1.0mg/m^3 $4mg/m^3$ 25.0 达标

表 3.1-1 区域环境空气质量现状评价表

区域 环境 质 现状

 O_3

根据表 3.1-1 分析可知,项目所在区域环境空气中 PM_{10} 、 SO_2 、 NO_2 、CO、 O_3 浓度均满足《环境空气质量标准》(GB3095-2012)二级标准; $PM_{2.5}$ 年均质量浓度不满足《环境空气质量标准》(GB3095-2012)二级标准。

143

89.4

160

达标

因此,项目所在的涪陵区属于环境空气质量不达标区,超标因子为 PM₂ 5。

根据《关于印发涪陵区环境空气质量限期达标规划(2018-2025)的通知》(涪陵府办发[2019]98号),涪陵区将采取以下措施改善大气环境质量:

- ①严格环境准入、优化产业结构和空间布局。严格环境准入,加大 产业结构、空间布局调整力度。
 - ②提高清洁能源利用比例。优化能源结构和提高能源利用效率。
 - ③深度治理工业污染。实施挥发性有机物排放达标专项整治,深化

重点行业大气污染治理, 开展工业锅炉综合整治, 开展工业炉窑治理专项行动。

- ④着力控制交通污染。打好柴油货车污染防治攻坚战,大力优化调整交通运输结构,加强船舶和非道路移动机械排气污染防治,加强机动车排气污染防治,实施清洁油品攻坚行动。
- ⑤综合防控扬尘污染。加强扬尘综合治理,严格施工扬尘监管,建立施工工地扬尘管理清单,加强道路扬尘综合整治;完成露天矿山综合整治;严格控制工业堆场扬尘污染;严格控制混凝土搅拌;减少城市裸地扬尘。
- ⑥有效控制生活、农业污染。深化餐饮油烟等治理;严格控制高污染燃料;严控露天焚烧和烟花爆竹燃放;控制生活源大气污染物排放;控制农业源氨排放。
- ⑦强化区域联防联控,增强监督管理能力。建立完善区域大气污染防治协作机制,加强重污染天气应急联动。夯实应急减排措施,加大环境执法力度,深入开展区级环境保护督察。
- ⑧强化综合决策支撑,增强科研分析能力。完善环境监测监控网络, 强化科技基础支撑,加大经济政策支持力度。

2025年目标:细颗粒物 (PM_{2.5}) 年均浓度实现达标 (≤35 μ g/m³), 其他空气污染物浓度实现稳定达标,涪陵区环境空气质量全部达到国家 二级标准要求,空气质量优良天数 310 天。

3.1.2 地表水环境质量现状

生产废水经厂区现有污水处理站处理达《污水综合排放标准》 (GB8978-1996)三级标准后、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理达《污水综合排放标准》(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂进一步处理达标排放,尾水最终排入长江,纳污水体为长江。根据《重庆市人民政府批转重庆市地表水环境功能类别调整方案的通知》(渝府发[2012]4号),长江(河凤滩~三堆子)属于III类水域,执行《地表水环境质量标准》(GB3838-2002)III类水域水质标准。 根据《建设项目环境影响报告表编制技术指南(污染影响类)》(试行)中地表水环境质量现状调查要求,可采用生态环境主管部门发布的水环境质量数据或地表水达标情况的结论。本次评价根据《2023年重庆市生态环境状况公报》水环境状况中地表水达标情况结论:"长江干流重庆段水质为优,20个监测断面水质均为II类"。

根据重庆市生态环境局公布的地表水达标情况结论,区域地表水满足《地表水环境质量标准》(GB3838-2002)III类水域水质标准。

3.1.3 声环境质量现状

根据《重庆市涪陵区人民政府办公室关于印发重庆市涪陵区声环境 功能区划分调整方案的通知》(涪陵府办发[2023]47号),茶涪路两侧属于 4a类区域,执行《声环境质量标准》(GB3096-2008)4a类标准。由于项 目厂界外周边50m范围内存在声环境保护目标,根据《建设项目环境影 响报告表编制技术指南(污染影响类)》(试行)要求,本次评价对声环 境质量现状监测。

本评价委托中国检验认证集团广西有限公司重庆检测技术分公司对项目周边居民点声环境质量进行了监测。

(1) 监测点位

结合项目特点和区域声环境敏感点分布情况,本次评价共布设了1个声环境现状监测点位,位于项目南侧山水佳苑处(C1)

(2) 监测项目

昼间、夜间等效连续 A 声级

(3) 监测时间及频次

2024年10月11日,监测1天,每天昼间、夜间各监测1次

(4) 监测方法

按《声环境质量标准》(GB3096-2008) 中规定的方法进行监测

(5) 评价方法与标准

噪声评价方法采用与标准值比较评述法。山水佳苑敏感点处执行《声环境质量标准》(GB3096-2008) 4a 类标准

(6) 监测及评价结果

声环境现状监测及评价结果详见表 3.1-2。

表 3.1-2 声环境现状监测及评价结果 单位: dB(A)

		昼间			夜间	
监测点位	监测值	标准值	达标情况	监测值	标准值	达标情况
C1	60	70	达标	52	55	达标

根据表 3.1-2 可知, C1 监测点昼间、夜间声环境噪声监测值满足《声环境质量标准》(GB3096-2008) 4a 类标准要求。

3.1.4 地下水、土壤环境

根据《建设项目环境影响报告表编制技术指南(污染影响类)》(试行):原则上不开展地下水、土壤环境质量现状调查。建设项目存在土壤、地下水环境污染途径的,应结合污染源、保护目标分布情况开展现状调查以留作背景值。

厂区地面进行了硬化处理,同时对厂区进行分区防渗,对危险废物贮存点进行了重点防渗处理,危险废物严格按照《危险废物贮存污染控制标准》(GB18597-2023)进行管理,在做好防渗措施的情况下,基本不存在地下水、土壤环境污染途径,因此,本次评价不开展地下水、土壤环境质量现状调查。

3.1.5 生态环境

拟建项目位于重庆涪陵工业园区龙桥组团石塔片区,用地性质为工业用地,利用已建厂房进行生产,不涉及新增用地,根据《建设项目环境影响报告表编制技术指南(污染影响类)》(试行)相关要求,本次评价不进行生态环境现状调查。

3.1.6 电磁辐射

根据《建设项目环境影响报告表编制技术指南(污染影响类)》(试行),拟建项目不属于"新建或改建、扩建广播电台、差转台、电视塔台、卫星地球上行站、雷达等电磁辐射类项目",因此,本次评价不进行电磁辐射现状监测与评价。

环境

3.2 环境保护目标

保护

3.2.1 外环境关系

目标

拟建项目位于重庆市涪陵区龙桥街道龙港大道 466 号,根据现场踏

勘,拟建项目西侧及东侧紧邻重庆新铝时代科技股份有限公司;南侧紧邻茶涪路;北侧为空地。拟建项目外环境关系见表 3.2-1。

表 3.2-1 项目外环境关系一览表

序号	名称	方位	距项目厂界最近 距离(m)	备注
1	重庆新铝时代科技股份有 限公司	西侧及东侧	紧邻	/
2	茶涪路	南侧	紧邻	/

3.2.2 大气环境保护目标

根据现场踏勘,拟建项目厂界外 500m 范围内分布有居民点,无自然保护区、风景名胜区、文化区等其他保护目标分布。主要大气环境保护目标详见表 3.2-2。

表 3.2-2 大气环境保护目标统计表

序	名称	坐村	示/m*	加拉拉	保护内容	环境功	相对厂	相对厂界
号		X	Y	保护对象		能区	址方位	距离/m
1	山水 佳苑	0	-60	居民区	约 490 户, 1675 人	二类	S	40

备注: "*"以 3#挤压车间西南角为原点坐标(0,0)。

3.2.3 声环境保护目标

根据现场踏勘,拟建项目厂界外 50m 范围内主要声环境保护目标为山水佳苑。主要声环境保护目标详见表 3.2-3。

表 3.2-3 声环境保护目标统计表

序	声环境保护	空间相对位置/m			距厂界最近	之 段	+1, 4= += \\
号	目标名称	X	Y	Z	距离/m	方位	执行标准
	山水佳苑	0	-60	1.5	40	S	《声环境噪声标准》
1							(GB3096-2008) 4a
							类标准

备注: "*"以 3#挤压车间西南角为原点坐标(0,0,0)。

3.2.4 地下水环境保护目标

拟建项目位于重庆市涪陵区龙桥街道龙港大道 466 号(重庆涪陵工业园区龙桥组团石塔片区),用地性质为工业用地,项目所在区域为工业园区,均已实现自来水全覆盖。项目厂界外 500m 范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

3.2.5 生态环境保护目标

拟建项目位于重庆市涪陵区龙桥街道龙港大道 466 号(重庆涪陵工业园区龙桥组团石塔片区),用地性质为工业用地,利用已建厂房进行生产,不涉及新增用地,不涉及生态环境保护目标。

3.3 污染物排放控制标准

3.3.1 废气排放标准

运营期,挤压的加热炉、时效炉使用天然气为燃料,天然气燃烧废气(颗粒物、SO₂、NOx)以无组织形式排放,其中,车间外颗粒物无组织排放执行《工业炉窑大气污染物排放标准》(DB50/659-2016)表3中排放浓度限值要求;厂界颗粒物、SO₂、NOx无组织排放执行《大气污染物综合排放标准》(DB50/418-2016)表1中排放浓度限值要求。食堂油烟执行《餐饮业大气污染物排放标准》(DB50/859-2018)标准。具体标准限值见表3.3-1~表3.3-3。

表 3.3-1 无组织废气排放限值一览表

污物 放制 准

监控点位	污染物	无组织排放监控点 浓度限值(mg/m³)	执行标准	
厂房门窗排放 口*(挤压车间)	颗粒物	5	《工业炉窑大气污染物排放标 准》(DB50/659-2016)	
	颗粒物	1.0	//	
厂界	SO_2	0.40	《大气污染物综合排放标准》 (DB50/418-2016)	
	NOx	0.12	(DB30/418-2010)	

表 3.3-2 餐饮单位的规模划分

规模	小型	中型	大型
基准灶头数 1	≥1, <3	≥3, <6	≥6
对应灶头总功率(10 ⁸ J/h)	1.67, <5.00	≥5, <10	≥10
对应集气罩灶面总投影面积(m²)	≥1.1, <3.3	≥3.3, <6.6	≥6.6
经营场所使用面积(m²)	≤150	>150, ≤500	>500
就餐座位数 2 (座)	≤75	>75, <150	≥150

注1: 基准灶头数不足1个时按1个计;

注 2: 就餐数>150座的餐饮服务企业每增加 40个座位视为增加 1个基准灶头数。

表 3.3-3 餐饮业大气污染物最高允许排放浓度

最高允许排放浓度(mg/m³)		
1.0		
10.0		
80 (无量纲)		

注:最高允许排放浓度指任何1小时浓度均值不得超过的浓度。

3.3.2 废水排放标准

拟建项目生产废水经厂区现有污水处理站处理达《污水综合排放标准》(GB8978-1996)三级标准后、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理达《污水综合排放标准》(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂进一步处理达标后排入长江。

龙桥工业园区污水处理厂出水执行《化工园区主要水污染物排放标准》(DB50/457-2012)中表 1 的规定(其中 COD 执行 60mg/L,未规定的指标执行《污水综合排放标准》(GB8978-1996)一级标准)。

具体标准限值见表 3.3-4。

表 3.3-4 污水排放标准 单位: (mg/L, pH 无量纲)

良		最高允许排放浓度					
序 号	污染物	排入力	之桥工业园区污水处理 厂	排入外环境			
1	рН	6~9		6~9	《污水综合排放标		
2	SS	400	龙桥工业园区污水处	70	准》(GB8978-1996)		
3	动植物油	100	理厂废水接纳标准	10	一级标准		
4	COD	500	《污水综合排放标	60	//小工同位主面-//		
5	BOD ₅	300	准》(GB8978-1996)	20	《化工园区主要水 污染物排放标准》		
6	NH ₃ -N	45*	三级标准	10	75架初排风标准》 (DB50/457-2012)		
7	石油类	20		3	(DB30/437-2012)		

备注: *氨氮参照执行《污水排入城镇下水道水质标准》(GB/T31962-2015) B级标准。

3.3.3 噪声排放标准

施工期噪声执行《建筑施工场界环境噪声排放标准》(GB12523-2011)标准,拟建项目位于重庆涪陵工业园区龙桥组团石塔片区,运营期,临茶涪路一侧厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)4类标准,其余侧厂界噪声执行《工业企业厂界环境噪声排放标

准》(GB12348-2008) 3 类标准, 具体标准限值见表 3.3-5~表 3.3-6。

表 3.3-5 《建筑施工场界环境噪声排放标准》(GB12523-2011) 单位: dB(A)

昼间	夜间
70	55

表 3.3-6 《工业企业厂界环境噪声排放标准》(GB12348-2008) 单位: dB(A)

时段	ž	昼间	夜间	备注
1-1/4-/-	3 类	65	55	东侧、北侧、西侧厂界
标准值	4 类	70	55	南侧厂界(临茶涪路一侧)

3.3.4 固体废物

一般工业固体废物:《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)中明确采用库房、包装工具(罐、桶、包装袋等)贮存一般工业固体废物过程的污染控制,不适用本标准,其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求。

危险废物:按《国家危险废物名录》(2025年版)、《危险废物贮存污染控制标准》(GB18597-2023)进行识别、贮存和管理。

3.4 总量控制指标

3.4.1 废气

拟建项目废气污染物总量控制详见表 3.4-1。

表 3.4-1 项目废气总量排放指标一览表

类别	污染因子	总量指标(t/a)	备注	
	颗粒物	0.109		
废气	二氧化硫	0.077	无组织	
	氮氧化物	0.717		

总量 控制

指标

3.4.2 废水

挤压模具碱煮及清洗废水经厂区现有污水处理站处理达《污水综合排放标准》(GB8978-1996)三级标准后、食堂废水经隔油池隔油处理后与生活污水一并进入厂区生化池处理达《污水综合排放标准》

(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂处理达《化工园区主要水污染物排放标准》(DB50/457-2012)中表1的规定(其中COD执行60mg/L,未规定的指标执行《污水综合排放标准》(GB8978-1996)中一级标准)后,尾水排入长江。

拟建项目废水污染物总量控制详见表 3.4-2。

表 3.4-2 项目废水总量排放指标一览表 总量指标(t/a) 类别 污染因子 排入市政管网 排入外环境 0.054 COD 0.322 废水 氨氮 0.009 0.002

四、主要环境影响和保护措施

4.1 施工期环境保护措施

拟建项目在厂区现有厂房内的空置区域扩建 1 条 3100 吨高端智能挤压生产线,不涉及新建厂房,施工期主要施工内容为设备的安装。

4.1.1 废气污染防治措施

施工期间废气主要为各种燃油动力机械在施工过程中产生的燃油废气,但属于短期影响。

施工过程中选用符合国家标准的施工机械设备和运输车辆,确保尾气 达标排放,施工材料优先使用新能源车辆运输;同时,加强施工机械维修、 保养,确保其处于最佳工作状态,以降低燃油废气产生量。

4.1.2 地表水环境污染防治措施

施工期废水主要来自施工人员产生的生活污水。

施工人员生活污水经厂区已建生化池处理达《污水综合排放标准》 (GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂进一步处理达标后排入长江。

通过以上措施, 生活污水对地表水的影响较小。

4.1.3 声环境污染防治措施

施工期主要为设备安装,不涉及打桩机、冲击钻等高噪声设备,主要为物料、设备运输的交通噪声和施工机械偶发噪声。为了减轻施工现场噪声污染的影响,施工过程中拟采取如下噪声防治措施:

- (1) 尽量选用低噪声的施工机械;合理安排施工时间,禁止夜间施工,设备装卸、搬运轻拿轻放,合理规划设备组装过程中敲打、钻孔等产生噪声的环节,文明施工。
- (2)场外运输作业尽量安排在白天进行,施工车辆行经敏感点应采取减速、禁鸣措施。
- (3)做好施工人员的环保意识教育,降低人为因素造成的噪声影响。 拟建项目施工多数在室内进行,噪声经建筑隔声等措施后,对周边环境影响较小,且施工噪声影响随施工的结束而消失,在环境可接受范围内。

4.1.4 固体废物污染防治措施

施期境护施工环保措施

施工期产生的固体废物主要为包装废弃物以及施工人员产生的生活垃圾。

包装废弃物主要为包装设备使用的木条、木板、纸板和塑料袋等,经分类收集后,外售物资回收单位。

生活垃圾经分类收集后,交由环卫部门处理。

施工期产生的固体废物均得到合理的处置,对周围环境的影响较小。 综上所述,拟建项目施工期的影响是暂时的,在施工结束后,影响区域的各环境要素基本都可以得到恢复。只要项目施工期认真制定和落实环保对策措施,项目施工的环境影响问题可以得到消除或有效的控制,可以使其对环境的影响降至最小程度。

4.2 运营期环境影响和保护措施

4.2.1 废气

4.2.1.1 废气源强核算

拟建项目运营期废气主要为天然气燃烧废气、焊接烟尘、打磨粉尘、氮化炉废气及食堂油烟。

(1) 天然气燃烧废气(G1、G2)

加热炉、时效炉通过燃烧天然气进行加热,天然气燃烧过程中会产生废气,主要污染物为颗粒物、SO₂、NO_x。

拟建项目铝合金型材生产线加热和时效工序天然气使用量情况见表 4.2-1。

表 4.2-1 铝合金型材生产线天然气用量情况一览表

厂房) L 友 料 目.	天然气	消耗量	갓 4k	年工作
	用气设备	设备数量	兴 ‡¢	年用量	产能	时间
		台	単耗	万 m³/a	t/a	h/a
2世文[[大]]	单棒加热炉	1	100m ³ /h	33	5,600	3300
3#挤压车间	时效炉	1	9.5m ³ /t	5.32	5600	3920

根据《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24 号)中《33-37,431-434 机械行业系数手册》中"天然气工业炉窑",工业废气量产污系数为 13.6m³/m³-原料、 SO_2 产污系数为 0.000002Skg/m³-原料(S 按 100 计)、NOx 产污系数为 0.00187kg/m³-原料、颗粒物产污系数为 0.000286kg/m³-原料。

运营 期环 境影 响和

保护

措施

75

根据《排放源统计调查产排污核算方法和系数手册》(公告 2021 年第 24号) 中《33-37,431-434 机械行业系数手册》中"热处理-天然气-整体 热处理(正火/退火)",工业废气量产污系数为13.6m³/m³-原料、SO2产污 系数为 0.000002Skg/m³-原料(S按 100 计)、NOx 产污系数为 0.00187kg/m³-原料、颗粒物产污系数为 0.000286kg/m³-原料。 则挤压生产线加热、时效工序天然气燃烧污染物产生情况见表 4.2-2。

运
营
期
环
境
影
响
和
保
护
措
施

			表 4.2-2	天然气燃烧	尧废气污染	物产生情	况一览表				
		天然气耗	工业废气产			产生情况	ı		排放情况		
污染源	工段	量	生量	污染物	浓度	速率	产生量	治理措施	浓度	速率	排放量
		万 m³/a	万 m³/a		mg/m ³	kg/h	t/a		mg/m ³	kg/h	t/a
 加热炉天然气燃烧	加热		448.8	颗粒物	20.94	0.028	0.094		20.94	0.028	0.094
加熱炉大熱气燃烧 废气(G1)		33		SO_2	14.71	0.020	0.066	直排	14.71	0.020	0.066
及(((日)				NOx	137.48	0.187	0.617		137.48	0.187	0.617
				颗粒物	20.72	0.004	0.015		20.72	0.004	0.015
时效炉天然气燃烧 废气(G2)	时效	5.32	72.4	SO_2	15.19	0.003	0.011	直排	15.19	0.003	0.011
				NOx	138.12	0.026	0.100		138.12	0.026	0.100

+17-T

(2) 焊接烟尘 G3

拟建项目模具检修依托现有工程焊机进行焊接,由于焊条年用量极少(8.5kg/a),因此,本评价不进行定量分析,焊接烟尘产生量少,直接以无组织形式排放。

(3) 打磨粉尘 G4

拟建项目模具检修依托现有工程打磨工序,打磨过程中产生的粉尘量较小,因此,本评价不进行定量分析,打磨粉尘产生量少,直接以无组织形式排放。

(4) 氮化炉废气 G5

拟建项目不新增氮化炉,模具检修渗氮工序依托现有工程已建氮化炉,氮化炉废气主要污染物为 NH₃,排放量少,依托现有工程的水吸收后排放。

运期 境响 保护

措施

(5) 食堂油烟 G6

现有工程设有食堂,新增人员依托现有工程食堂进行就餐,拟建项目新增食堂就餐人员10人。

根据类比调查和有关资料显示,食堂食用油用量约 30g/人·d,在炒作时油烟挥发量约为 3%。此外,根据《环境监控与预警》2018 年第 1 期郭浩等人对《家庭烹饪油烟污染物排放特征研究》,烹炒类菜品非甲烷总烃产生浓度为 13.46mg/m³,保守考虑,食堂油烟中非甲烷总烃产生浓度取值 15mg/m³。

根据建设单位提供的资料,排放风量为 4000m³/h,新增烹饪时间约 0.5h/d,经核算,拟建项目油烟产生量约为 0.0027t/a,产生浓度为 4.5mg/m³,非甲烷总烃产生量约为 0.009t/a,经油烟净化器(油烟和非甲烷总烃去除率分别以 90%、65%计算)处理后,通过专用烟道引至楼顶排放,油烟排放量约为 0.0003t/a,排放浓度为 0.45mg/m³,非甲烷总烃排放量约为 0.0032t/a,排放浓度为 5.25mg/m³。

拟建项目废气污染源源强核算结果及相关参数详见表 4.2-3。

					表 4.2-3	废气污	染源源	强核算	结果及	相关参	数一览表					
					产生情况			治理措施				排放情况				
				,	工用:	/L			旧垤1目	ルビ	1		有组织		无组织	排放口基
运	污染源	排放形式	污染物	浓度	速率	产生量	工艺	风量	收集 效率	处理 效率	是否为 可行技	浓度	速率	排放量	排放量	本情况
营				mg/m ³	kg/h	t/a		m ³ /h	%	%	术	mg/m ³	kg/h	t/a	t/a	
期	加热炉天然气		颗粒物	20.94	0.028	0.094						/	/	/	0.094	
环	燃烧废气	无组织	SO ₂	14.71	0.020	0.066	/	/	/	/	/	/	/	/	0.066	/
,	(G1)		NOx	137.48	0.187	0.617						/	/	/	0.617	
境	时效炉天然气		颗粒物	20.72	0.004	0.015						/	/	/	0.015	
影	燃烧废气	无组织	SO ₂	15.19	0.003	0.011	/	/	/	/	/	/	/	/	0.011	/
响	(G2)		NOx	138.12	0.026	0.100						/	/	/	0.100	
和	焊接烟尘 (G3)	无组织	颗粒物	/	/	少量	/	/	/	/	/	/	/	/	少量	/
保始	打磨粉尘 (G4)	无组织	颗粒物	/	/	少量	/	/	/	/	/	/	/	/	少量	/
护措	氮化炉废气 (G5)	无组织	NH ₃	/	/	少量	水吸收	/	/	/	/	/	/	/	少量	/
施	会告油 烟		油烟	4.5	/	0.0027	油烟		/	90		/	/	/	0.0003	
	食堂油烟 (G6)	无组织	非甲烷 总烃	15	/	0.009	净化 器	4000	/	65	是	/	/	/	0.0032	/

4.2.1.2 废气处理措施可行性分析

- (1)加热炉、时效炉均使用天然气为燃料,天然气属于清洁能源, 天然气燃烧产生的废气能达标排放。
- (2)由于焊接烟尘、打磨粉尘产生量少,直接以无组织形式排放, 拟建项目模具检修依托现有工程已建修模房,现有工程已通过环保验收, 无组织排放监测点颗粒物排放浓度满足《大气污染物综合排放标准》 (DB50/418-2016)中无组织排放监控浓度限值要求。
- (3) 氮化炉废气经水吸收后排放,拟建项目模具检修依托现有工程已建的氮化炉,现有工程已通过环保验收,氮化炉废气治理措施可行。
- (4)食堂油烟经油烟净化器处理后,通过1根专用烟道引至楼顶排放,根据对现有工程食堂油烟的监测情况可知,食堂油烟废气排放口排放的油烟、非甲烷总烃排放浓度满足《餐饮业大气污染物排放标准》

(DB50/859-2018) 限值要求, 防治措施有效。

综上所述,拟建项目采用的废气污染治理设施基本有效、可行。

4.2.1.3 废气达标排放分析

拟建项目废气达标排放分析见表 4.2-4。

4.2-4 废气污染物排放达标情况一览表

		排放		标准限值	达标	排气筒
污染源	污染物	浓度	执行标准	浓度 mg/m³	情况	高度
		mg/m ³		₩/X mg/m	月が	(m)
	油烟	0.45	《餐饮业大气污染物	1.0	达标	
食堂油烟	非甲烷	5.25	排放标准》	10.0	>1. I.→	8
	总烃	5.25	(DB50/859-2018)	10.0	达标	

4.2.1.4 环境影响分析

拟建项目位于重庆市涪陵区龙桥街道龙港大道 466 号(重庆涪陵工业园区龙桥组团石塔片区),周边 500m 范围内主要大气环境保护目标为居民点,不涉及自然保护区、风景名胜区等需要特殊保护的区域。

项目所在区域属于环境空气质量不达标区,涪陵区已制定大气污染治理计划,实施措施后将改善大气环境;拟建项目废气通过采取相应污染防治措施后能实现达标排放,对外环境影响小。

4.2.1.5 废气自行监测要求

根据《固定污染源排污许可分类管理名录(2019 年版)》,拟建项目属于"二十七、有色金属冶炼和压延加工业 32—79.有色金属压延加工325—有轧制或者**退火工序**",实行排污简化管理。

根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污许可证申请与核发技术规范 工业炉窑》(HJ1121-2020),拟建项目废气监测计划详见表 4.2-5。

类别 | 监测点位 监测项目 监测频次 执行标准 厂房门窗 《工业炉窑大气污染物排放标准》 颗粒物 1 次/年 排放口 (DB50/659 -2016) 废气 《大气污染物综合排放标准》 颗粒物、 厂界 1 次/年 SO₂, NOx (DB50/418-2016)

表 4.2-5 废气环境监测计划表

4.2.2 废水

4.2.2.1 废水产生及排放情况

拟建项目运营期产生的废水主要为生产废水、食堂废水及生活污水。

(1) 生产废水

①冷却废水

拟建项目设有冷却塔,冷却水在冷却过程中蒸发损耗,需定期补充,蒸发损耗量约 2%,补充损耗量约 20m³/d(6000m³/a),冷却水循环使用,不外排。

②淬火冷却喷雾废水

拟建项目型材出模后会采用水雾进行急剧冷却,类比现有工程情况,补水量约 3.4m³/d(1020m³/a),冷却水循环使用,不外排。

③挤压模具碱煮及清洗废水 W1

类比现有工程挤压模具碱煮及清洗用水情况, 拟建项目挤压模具碱煮及清洗用水量约 2.5m³/d (750m³/a), 排污系数按 0.9 计,则挤压模具碱煮及清洗废水产生量约为 2.25m³/d (675m³/a), 主要污染物为 pH、COD、SS、石油类。

(2) 食堂废水 W2

现有工程设有食堂,新增人员依托现有工程食堂进行就餐,新增劳动定员 10 人,食堂用水量按 40L/人·d 计算,则食堂用水量为 0.4m³/d

(120m³/a),排污系数按 0.9 计,食堂废水产生量为 0.36m³/d (108m³/a), 主要污染因子为COD、BOD5、SS、NH3-N、动植物油。 (3) 生活污水 W3 拟建项目新增劳动定员 10 人, 生活用水量按每人 40L/d 计算, 则员 工生活用水量为 0.4m³/d (120m³/a),排污系数按 0.9 计,生活污水产生量 为 0.36m³/d(108m³/a)。 拟建项目废水污染物产生及排放情况见表 4.2-6。

运营
期环
境影
响和
保护

措施

表 4.2-6 废水产生及排放情况一览表

				污染物 -	产生情	7日		排入市政污	水管図	龙桥工业园区污	5水处理厂
产	*排污环	污染源	废水量		/ 工品/6		治理措施	11F/\11FUX17	八日四	(排入环境)	
	带	77朱			浓度	产生量	石垤泪旭 	浓度	排放量	浓度	排放量
			m³/a		mg/L	t/a		mg/L	t/a	mg/L	t/a
				рН	10~12	/	厂区污水处理站	6~9	,	6~9	/
4.4	模具碱煮	挤压模具碱煮	675		(无量纲)			(无量纲)	/	(无量纲)	
		及清洗废水		COD	500	0.338		350	0.236	60	0.041
	及清洗	(W1)		SS	300	0.203		150	0.101	70	0.047
				石油类	80	0.054		18	0.012	3	0.002
				COD	500	0.108		400	0.086	60	0.013
	\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	食堂废水		BOD ₅	350	0.076		280	0.060	20	0.004
	食堂、办 公生活	(W2)及生活	216	SS	350	0.076	隔油池+生化池	320	0.069	70	0.015
		污水(W3)		NH ₃ -N	45	0.010		40	0.009	10	0.002
				动植物油	50	0.011		45	0.010	10	0.002

备注:废水排入市政污水管网执行《污水综合排放标准》(GB8978-1996)三级标准,废水经龙桥工业园区污水处理厂处理后执行《化工园区主要水污染物排放标准》(DB50/457-2012)中表 1 的规定(其中 COD 执行 60mg/L,未规定的指标执行《污水综合排放标准》(GB8978-1996)一级标准)。

- 4.2.2.2 建设项目废水污染物排放信息
- (1) 废水排放口基本情况

拟建项目废水间接排放口基本情况见表 4.2-7。

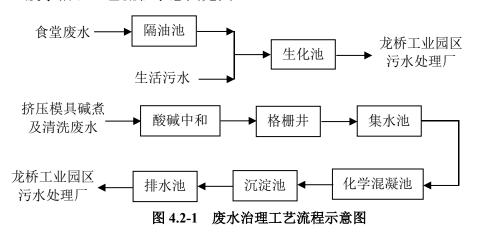
表 4.2-7 废水排放口基本情况表

☆小米□	排放口	北北 ロ <i>ねね</i>	排放口地		+1+++++++++++++++++++++++++++++++++++++	+11·24·4π/24·	排放口	
废水类别	编号	排放口名称	经度	纬度	排放去向	排放方式	排放规律	类型
挤压模具碱煮	DW001	污水处理站	107° 13′ 20.96″	20° 40′ 20 42″	龙桥工业园区	间接排放	间断排放,排放期间流量	一般排
及清洗废水	DW001	总排口	107° 13′ 20.96″	29° 40′ 39.43″	污水处理厂		稳定	放口
食堂废水及生	,	生化池排放	107° 13′ 18 68″	20° 40′ 42.54″	龙桥工业园区	店 按 Ht 分	间断排放,流量不稳定,	一般排
活污水 /		П	107° 13′ 18.68″	29° 40′ 43.54″	污水处理厂	间接排放	无规律	放口

备注:根据排污许可证,建设单位未对生化池排放口进行编号。

(2) 废水污染物排放执行标准

拟建项目废水污染物排放执行标准见表 4.2-8。


表 4.2-8 废水污染物排放执行标准表

	## D 夕彩	》二次1. 44m 五山 米	国家或地方污染物排放标准				
排放口编号	排放口名称	污染物种类	名称	浓度限值(mg/L)			
		рН		6~9			
DW001	 污水处理站总排口	COD	《污水综合排放标准》(GB8978-1996)三级标准	500			
	75.70.70.70.70.70.70.70.70.70.70.70.70.70.	SS	《行外综合排放你准》(GB8978-1990)三级你住 	400			
		石油类		20			
		pН		6~9			
		COD	// // // // // // // // // // // // //	500			
	 生化池排放口	BOD ₅	《污水综合排放标准》(GB8978-1996)三级标准,其中 NH3-N 参照执行《污水排入城镇下水道水质标准》	300			
/	生化他排放口	SS	(GB/T31962-2015) B 级标准	400			
		NH ₃ -N	(OD/131902-2013) D 级例(性	45			
		动植物油		100			

4.2.2.3 废水治理措施

厂区污水处理站处理工艺为酸碱中和+格栅井+集水池+化学混凝池+ 沉淀池+排水池, 达标后经园区污水管网进入龙桥工业园区污水处理厂处 理; 食堂废水经隔油池隔油处理后与生活污水一并进入生化池处理, 达标 后经园区污水管网进入龙桥工业园区污水处理厂进一步处理达标后排入 长江。

废水治理工艺流程示意图见图 4.2-1。

- 4.2.2.4 废水污染防治措施及依托可行性分析
 - (1) 厂区污水处理设施依托可行性分析
- ①污水处理站依托可行性分析

厂区建有1座污水处理站,设计处理能力为1200m³/d,采用"酸碱中和+格栅井+集水池+化学混凝池+沉淀池+排水池"处理工艺,设备运行良好,出水水质达标。目前污水处理站接纳废水量约为198.6m³/d,剩余处理能力为1001.4m³/d。

本次依托现有工程模具碱煮及清洗区对模具进行脱模处理,生产废水 (挤压模具碱煮及清洗废水)产生总量为 2.25m³/d,废水水质与原厂区废水水质一致,依托厂区污水处理站处理后能够达标排放,因此,现有污水处理站能够满足要求。

②生化池依托可行性分析

现有工程食堂设有隔油池及生化池,生化池设计处理能力为80m³/d,运行良好,出水水质达标。根据业主提供的资料,目前生化池接纳废水量约为42.16m³/d,剩余处理能力为37.84m³/d。

食堂废水及生活污水依托现有工程处理设施进行处理,食堂废水及生活污水产生总量为 0.72m³/d,废水水质与原厂区废水水质一致,依托厂区隔油池及生化池处理后能够达标排放,因此,现有隔油池及生化池能够满足要求。

综上所述, 厂区污水治理设施依托可行。

(2) 污水处理厂依托可行性分析

龙桥工业园区污水处理厂主要接纳南岸浦片区、石塔片区、太极退城入园、苏家湾片区企业工业废水。

龙桥工业园区污水处理厂位于涪陵区龙头港石灰湾,总设计处理规模为3万 m³/d,其中,一期工程处理规模为1万 m³/d,二期工程处理规模为2万 m³/d,采用"CAST 工艺+气水反冲均粒滤料滤池+二氧化氯消毒"处理工艺,龙桥工业园区污水处理厂运行正常。污水处理厂尾水处理满足《化工园区主要水污染物排放标准》(DB50/457-2012)中表1的规定(其中COD 执行60mg/L,未规定的指标执行《污水综合排放标准》(GB8978-1996)一级标准)后达标排入长江。

拟建项目位于龙桥工业园区污水处理厂收集范围内,周边市政污水管 网完善,项目运营期新增废水量约 2.97m³/d,占龙桥工业园区污水处理厂设计处理规模的 0.01%,比例非常小,龙桥工业园区污水处理厂污水处理规模完全能够满足拟建项目的废水处理;拟建项目水质成分较简单,污染物浓度低,不会对污水处理厂造成冲击负荷,现有工艺完全可以满足处理该部分废水。因此,拟建项目排放的废水水质、水量等均满足龙桥工业园区污水处理厂的要求,不会影响污水处理厂的正常运行与达标排放,依托龙桥工业园区污水处理厂处理是合理可行的。

综上所述,项目废水处理措施是可行、可靠的。

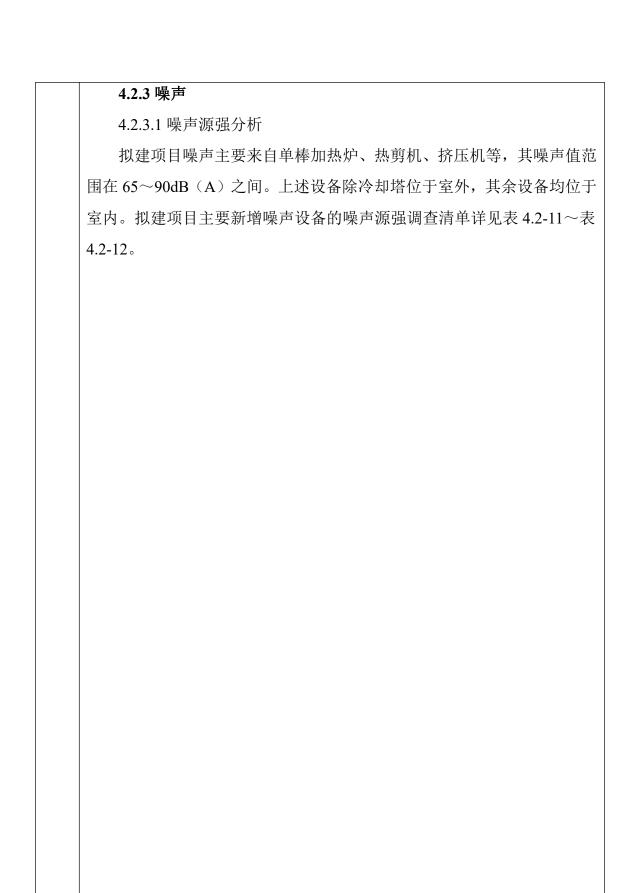
4.2.2.5 废水达标排放分析

拟建项目废水达标排放分析情况见表 4.2-9。

表 4.2-9 废水达标排放分析情况表 (pH 无量纲)

污染源	污染物	排放 浓度 mg/L	排放标 准限值 mg/L	排放标准及标准号	达标 分析			
			污水处理站总排口					
挤压模	рН	6~9	6~9		达标			
具碱煮	COD	350	500	《污水综合排放标准》	达标			
及清洗	SS	150	400	(GB8978-1996)三级标准	达标			
废水	石油类	18	20		达标			
			生	化池排放口				
	COD	400	500	《污水综合排放标准》	达标			
食堂废	BOD ₅	280	300	(GB8978-1996)三级标准,其中	达标			
水及生	SS	320	400	NH ₃ -N 参照执行《污水排入城镇下水	达标			
活污水	NH ₃ -N	40	45	道水质标准》(GB/T31962-2015)B	达标			
	动植物油	45	100	级标准	达标			

4.2.2.6 地表水环境影响分析


生产废水(挤压模具碱煮及清洗废水)依托厂区已建污水处理站处理,食堂废水经隔油池(依托)隔油处理后与生活污水一并进入厂区生化池(依托)处理,废水处理达《污水综合排放标准》(GB8978-1996)三级标准后,经园区污水管网进入龙桥工业园区污水处理厂进一步处理后排入长江。拟建项目废水排放量较小且水质简单,经厂区污水处理设施及龙桥工业园区污水处理厂处理后可实现达标排放,属间接排放,对地表水的影响较小。

4.2.2.7 废水自行监测要求

拟建项目依托厂区现有污水处理设施,执行现有废水监测计划,拟建项目不再提出监测计划要求,但项目竣工环境保护验收应对依托的污水处理设施出水水质进行监测,具体监测计划要求见表 4.2-10。

表 4.2-10 废水环境监测计划表

类别	污染源	监测点位	监测项目	监测频次	执行标准
	生产废	污水处理	pH、COD、SS、		《污水综合排放标
	水	站总排口	石油类		准》(GB8978-1996)
				连续监测	三级标准,其中
応ず	食堂废		pH、COD、	2天,每	NH ₃ -N 参照执行《污
废水		生化池排	BOD ₅ , SS,	天采样 4	水排入城镇下水道水
	水及生 活污水	放口	NH3-N、动植物	次	质标准》
	伯拉尔		油		(GB/T31962-2015)
					B 级标准

表 4.2-11 项目新增设备噪声源强调查清单(室外声源)

序号	士派 丸 私	型号	空间	相对位置	置/m	声源源强	→ 冰石 +☆ 小川 +北 →ケ	→ 45 m→ FA
	声源名称	空写 	X	Y	Z	(声压级/距声源距离 1m)/dB(A)	声源控制措施	运行时段
1	冷却塔	75t	44.5	17	1	80	选用低噪声设备,基础减振等	昼间、夜间

备注:以 3#挤压车间西南角为原点坐标(0,0,0),正东向为 X 轴正方向,正北向为 Y 轴正方向, Z 轴向为地面高程。

运

营

表 4.2-12 项目新增设备噪声源强调查清单(室内声源)

期																
					声源源强		空间	相对位置	/m			室内		建筑物	建筑物	7外噪声
环	序	建筑物	声源名	型号	(声压级/距声	声源控制				距室内	内边界	边界	运行	插入损	声压级	建筑物
境	号	名称	称	至与	源距离 1m)	措施	X	Y	Z	距逐	骜/m	声级/	时段	失		外距离
影					/dB(A)							dB(A)		/dB(A)	/dB(A)	/m
										东侧	13	42.7			16.7	1
响			单棒加	,	65		27	40	1	南侧	21	38.6	日本	20	12.6	1
和			热炉	/	65		37	40	1	西侧	50	31.0	昼夜	20	5.0	1
保										北侧	209	18.6			0	1
						选用低噪				东侧	13	47.7			21.7	1
护		3#挤压	单棒热	A 205	70	声设备,采	22	50	1	南侧	32	39.9	日本	20	13.9	1
措	1	车间	剪机	Ф305	70	用建筑隔	33	50	l	西侧	50	36.0	昼夜	20	10.0	1
施						声、基础减				北侧	198	24.1			0	1
加也						振等措施				东侧	2	84.0			58.0	1
				45MN						南侧	34	59.4	_ 、		33.4	1
			挤压机 卧式 90 正向	39	55	1	西侧	61	54.3	昼夜	20	28.3	1			
								北侧	196	44.2			18.2	1		

							东侧	9.5	45.4			19.4	1		
	44 日 14	4 B	65	20	62.5	1	南侧	45	31.9	尺左	20	5.9	1		
	模具炉	4 腔	65	29	62.5	1	西侧	53.5	30.4	昼夜	20	4.4	1		
							北侧	185	19.7			0	1		
							东侧	3	60.5			34.5	1		
	1# F D	2.	70	25~	59~		南侧	40	38.0	日本	20	12.0	1		
	模具吊	2t	70	39	67	6	西侧	60	34.4	昼夜	20	8.4	1		
							北侧	190	24.4			0	1		
							东侧	9.5	65.4			39.4	1		
	冷床	四级	85	15	96	1	南侧	81	46.8	昼夜	20	20.8	1		
	17/1	传动	63	13	90	1	西侧	53.5	50.4	.4	20	24.4	1		
							北侧	149	41.5			15.5	1		
							东侧	1	85.0			59.0	1		
	淬火系	/	85	36	67	1	南侧	46	51.7	昼夜	20	25.7	1		
	统	,			0,	•	西侧	62	49.2	<i>□</i>	20	23.2	1		
							北侧	184	39.7			13.7	1		
							东侧	1	85.0			59.0	1		
	加强风	/	85	35	73	1	南侧	52	50.7	昼夜	20	24.7	1		
	冷系统						西侧	62	49.2			23.2	1		
							北侧	178	40.0			14.0	1		
							东侧	1	75.0			49.0	1		
	牵引机	/	75	39	64	1	南侧	42.5	42.4	昼夜	20	16.4	1		
	1 31 1/4	,	, ,		04 1		西侧	62	39.2	^		13.2	1		
									北侧	187.5	29.5			3.5	1

中断锯 / 85 28.5 74 1 南侧 56 50.0 昼夜 20 24.0 23.9 北側 174 40.2 49.9 14.2 34.4 40.2 水倉利 / 80 20.5 83 1 新側 67 43.5 昼夜 20 17.5 近側 53.5 45.4 北側 163 35.8 45.4 北側 163 35.8 20 9.8 変別 1.5 62.4 南側 61 49.3 昼夜 20 23.3 25.1 北側 169 40.4 40.4 40.4 40.4 40.4 北側 169 40.4 40.4 40.4 40.4 40.4 40.4 40.4 大倉利 1.0 1.0 1.0 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.0 40.0 40.0 40.0 40.0 40.0 50.0 <t< th=""><th></th><th><u> </u></th><th>T</th><th></th><th></th><th></th><th></th><th>Т</th><th></th><th></th><th></th><th></th><th></th><th>$\overline{}$</th></t<>		<u> </u>	T					Т						$\overline{}$
日本 日本 日本 日本 日本 日本 日本 日本			-											
拉直机	20 24.0	方			56	南侧	1	,	28.5	85	/	中断锯		
拉直机 / 80 20.5 83 1 东侧 9.5 60.4 南侧 67 43.5 西侧 53.5 45.4 北侧 163 35.8 牙侧 13.5 62.4 南侧 61 49.3 西侧 49.5 51.1 北侧 169 40.4 条侧 20.5 48.8 南侧 80 36.9 西侧 42.5 42.4 北侧 150 31.5 5.5 昼夜 20 36.4 23.3 25.1 14.4 14.4 14.1 14	23.9			49.9	57	西侧	1		20.3		,	1 12/1 1/1		
拉直机 / 80 20.5 83 1 南侧 67 43.5 西侧 53.5 45.4 4 10 163 35.8	14.2			40.2	174	北侧								
Page	34.4			60.4	9.5	东侧								
大字 16t 80 18 19.4 19.4 19.4 19.4 19.4 19.5 11.5	17.5	_{रोज}	 	43.5	67	南侧	1		20.5	90	,	45. 本和		
定尺锯 / 85 20 76 1 新侧 61 49.3	19.4		生物	45.4	53.5	西侧	1		20.5	80	/	拉里机		
定尺锯 / 85 20 76 1 南侧 61 49.3 昼夜 20 23.3 西侧 49.5 51.1 北侧 169 40.4 49.3 25.1 北側 169 40.4 49.3 49.3 25.1 市側 40.5 <t< td=""><td>9.8</td><td></td><td></td><td>35.8</td><td>163</td><td>北侧</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	9.8			35.8	163	北侧								
日本 16t 80 20 76 1 西側 49.5 51.1 重複 20 25.1 14.4 14.4 169 40.4 14.4 14.4 169 40.4 14.4 169 40.4 14.4 169 40.4 169 40.4 169 40.4 169 40.4 169 40.4 169 40.5 16.4 16.4 169 16.4 169 16.4 16.4 169 16.4 16.4 169 16.4	36.4			62.4	13.5	东侧								
	23.3	<u> </u>		49.3	61	南侧		l .		0.5	,	<i>→</i> □ <i>□</i>		
Fraction	25.1	夕	堂仪	51.1	49.5	西侧	I	/6	20	85	/	定尺锯		
	14.4			40.4	169	北侧								
	22.8			48.8	20.5	东侧								
行车 3t 70 5 90 1 西侧 42.5 42.4 150 31.5 5.5	10.9	,		36.9	80									
行车 3t 70 $-18\sim 10.5\sim 40.5 \ 105$ 6 $ $	20 16.4	を	昼夜	42.4	42.5		1	9	5	75	/	时效炉		
行车 3t 70 $-18\sim 10.5\sim 40.5 \ 105$ 6 $ $	5.5			31.5	150	北侧								
行车 3t 70 -18^{\sim} 10.5^{\sim} 6 \overline{a} \overline{a}														
行车 3t 70 40.5 105 6 西侧 27 41.4 昼夜 20 15.4 2.1	44.0		-					10	-18~					
	20	友	昼夜				6			70	3t	行车		
行车 16t 80 -4~ 18~ 57 115 6 京侧 1 80.0 54.0 西侧 44 47.1 昼夜 20 54.0 21.1			+											
行车 16t 80 -4~ 18~														
								19	_4~					
	20	友 20	─				6			80	16t	行车		
								1						
\perp		20	20 24.0 23.9 14.2 34.4 17.5 19.4 9.8 36.4 23.3 25.1 14.4 22.8 10.9 16.4 5.5 18.9 44.0 15.4 2.1 54.0 54.0 21.1 12.4	昼夜 20 24.0 23.9 14.2 34.4 17.5 19.4 9.8 36.4 23.3 25.1 14.4 22.8 10.9 16.4 5.5 18.9 44.0 15.4 2.1 54.0 54.0 20 21.1 12.4	50.0 昼夜 20 24.0 49.9 40.2 14.2 60.4 34.4 43.5 45.4 17.5 45.4 9.8 52.4 36.4 49.3 20 23.3 51.1 40.4 14.4 48.8 22.8 36.9 10.9 42.4 31.5 5.5 44.9 20 18.9 70.0 41.4 28.1 20 80.0 54.0 47.1 38.4 20	56 50.0 57 49.9 174 40.2 9.5 60.4 67 43.5 53.5 45.4 163 35.8 13.5 62.4 61 49.3 49.5 51.1 169 40.4 20.5 48.8 80 36.9 42.5 42.4 150 31.5 18 44.9 1 70.0 27 41.4 125 28.1 1 80.0 44 47.1 120 38.4 20 20 16.4 15.4 20 16.4 15.4 20 44.0 20 44.0 20 44.0 54.0 44.0 21.1 120 38.4	南侧 56 50.0 昼夜 20 24.0 西侧 57 49.9 14.2 23.9 北侧 174 40.2 34.4 南侧 67 43.5 43.5 20 17.5 西侧 53.5 45.4 45.4 19.4 北侧 163 35.8 9.8 东侧 13.5 62.4 36.4 南侧 61 49.3 25.1 北側 169 40.4 23.3 西側 49.5 51.1 25.1 北側 169 40.4 40.4 东侧 20 10.9 西侧 42.5 42.4 北側 150 31.5 东侧 18 44.9 南侧 1 70.0 西侧 27 41.4 北側 125 28.1 东侧 1 80.0 南侧 1 80.0 南侧 1 80.0 西侧 44 47.1 北侧 120 38.4	74 1 南侧 56 50.0 昼夜 20 24.0 西侧 57 49.9 14.2 14.2 x 东侧 9.5 60.4 34.4 南侧 67 43.5 昼夜 20 17.5 西侧 53.5 45.4 9.8 x 京侧 13.5 62.4 36.4 南侧 61 49.3 23.3 西侧 49.5 51.1 14.4 北側 169 40.4 40.4 末側 20.5 48.8 40.4 市側 80 36.9 36.9 西側 42.5 42.4 42.4 北側 150 31.5 5.5 东側 18 44.9 44.9 市側 1 70.0 万0.0 5.5 西側 27 41.4 2.1 北側 125 28.1 2.1 东侧 1 80.0 54.0 西侧 44 47.1 2.0 北側 120 38.4 20 20	74 1 南侧 56 50.0 昼夜 20 24.0 西侧 57 49.9 14.2 北侧 174 40.2 34.4 麻侧 67 43.5 43.5 45.4 古侧 53.5 45.4 49.8 49.8 大侧 163 35.8 45.4 49.8 20 西侧 61 49.3 49.3 49.8 25.1 北侧 169 40.4 40.4 40.4 40.4 大侧 169 40.4 40.4 40.4 40.4 大侧 150 31.5 42.4 40.4 5.5 西侧 42.5 42.4 40.4 5.5 五侧 150 31.5 5.5 44.0 10.5~ 方侧 18 44.9 44.0 105 方侧 17.0 44.0 15.4 北侧 125 28.1 20 44.0 18~ 18.9 44.0 54.0 18~ 18.0 54.0 54.0 五十 北侧 120 38.4 47.1 20	28.5 74 1 南侧 56 50.0 昼夜 20 23.9 14.2 上侧 174 40.2 49.9 14.2 20.5 83 1 新侧 9.5 60.4 </td <td>85 28.5 74 1 南侧 56 50.0 西侧 57 49.9 北侧 174 40.2 40.2 50.0 14.2 40.2 50.0 14.2 40.2 50.0 14.2 40.2 50.0 14.2 40.2 50.0 14.2 50.0</td> <td>/ 85 28.5 74 1 南侧 56 50.0 西侧 57 49.9 北侧 174 40.2 14.2 14.2 14.2 12.4 昼夜 20 23.9 14.2 14.2 12.3 / 80 20.5 83 1 茶侧 9.5 60.4 南侧 67 43.5 西侧 53.5 45.4 1.0 19.4 14.3 14.0 16.3 35.8 14.0 19.4 14.0 16.3 35.8 14.0 19.4 14.0 16.3 35.8 14.0 19.4 14.0 16.0 16.0 16.0 14.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16</td> <td>中断锯 / 85 28.5 74 1 南侧 56 50.0 四侧 57 49.9 北侧 174 40.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 20.5 83 1</td> <td>中断锯 / 85 28.5 74 1 商侧 56 50.0 西侧 57 49.9 北侧 174 40.2 23.9 14.2 23.9 14.2 20 23.9 14.2 20 23.9 14.2 20 24.0 23.9 14.2 20 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1</td>	85 28.5 74 1 南侧 56 50.0 西侧 57 49.9 北侧 174 40.2 40.2 50.0 14.2 40.2 50.0 14.2 40.2 50.0 14.2 40.2 50.0 14.2 40.2 50.0 14.2 50.0	/ 85 28.5 74 1 南侧 56 50.0 西侧 57 49.9 北侧 174 40.2 14.2 14.2 14.2 12.4 昼夜 20 23.9 14.2 14.2 12.3 / 80 20.5 83 1 茶侧 9.5 60.4 南侧 67 43.5 西侧 53.5 45.4 1.0 19.4 14.3 14.0 16.3 35.8 14.0 19.4 14.0 16.3 35.8 14.0 19.4 14.0 16.3 35.8 14.0 19.4 14.0 16.0 16.0 16.0 14.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	中断锯 / 85 28.5 74 1 南侧 56 50.0 四侧 57 49.9 北侧 174 40.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 23.9 14.2 20.5 83 1	中断锯 / 85 28.5 74 1 商侧 56 50.0 西侧 57 49.9 北侧 174 40.2 23.9 14.2 23.9 14.2 20 23.9 14.2 20 23.9 14.2 20 24.0 23.9 14.2 20 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1

备注:以 3#挤压车间西南角为原点坐标(0,0,0),正东向为 X 轴正方向,正北向为 Y 轴正方向,Z 轴向为地面高程。

4.2.3.2 预测模式

本评价采用《环境影响评价技术导则 声环境》(HJ2.4-2021)中推荐的模式,并对照评价标准对预测结果进行评价。

(1) 室内声源等效室外声源声功率级计算方法

$$L_{p2} = L_{p1} - (TL + 6)$$

式中: L_{pl} —靠近开口处(或窗户)室内某倍频带的声压级或 A 声级, dB:

 L_{p2} —靠近开口处(或窗户)室外某倍频带的声压级或 A 声级,dB;

TL—隔墙(或窗户)倍频带或A声级的隔声量,dB。

(2) 点声源预测模式

$$L_{\rm A} = L_{\rm p2} - 20\lg(r/r_0)$$

式中: La-预测点处声压级, dB;

 L_{p2} —参考位置 r_0 处的声压级,dB;

r—预测点距声源的距离;

ro—参考位置距声源的距离;

(3) 工业企业噪声计算

设第 i 个室外声源在预测点产生的 A 声级为 L_{Ai} ,在 T 时间内该声源工作时间为 t_i ;第 j 个等效室外声源在预测点产生的 A 声级为 L_{Aj} ,在 T 时间内该声源工作时间为 t_j ,则拟建工程声源对预测点产生的贡献值(Leqg)为:

$$L_{eqg} = 10 \lg \left[\frac{1}{T} \left(\sum_{i=1}^{N} t_i 10^{0.1L_{Ai}} + \sum_{j=1}^{M} t_j 10^{0.1L_{Aj}} \right) \right]$$

式中: Leqg—建设项目声源在预测点的产生的噪声贡献值, dB;

LAi—室外声源在预测点产生的 A 声级, dB;

T—用于计算等效声级的时间, s:

N-室外声源个数:

ti—在T时间内i声源工作时间,s;

Lai—等效室外声源在预测点产生的 A 声级, dB;

M—等效室外声源个数;

运营 期环

境影 响和

保护 措施 t_i —在T时间内j声源工作时间,s。

4.2.3.3 预测结果与评价

(1) 厂界噪声预测结果

综合考虑噪声源分布及防噪降噪措施,拟建项目各厂界噪声预测值详见表 4.2-13。

预测点位	贡献		现有二献	L程贡 值	预测	削值	标准	主值	达标	情况
	昼间	夜间	昼间	夜间	昼间	夜间	昼间	夜间	昼间	夜间
南侧厂界	49.0	49.0	63	52	63.2	53.8	70	55	达标	达标
北侧厂界	27.2	27.2	63	54	63.0	54.0	65	55	达标	达标

表 4.2-13 厂界噪声预测结果一览表 单位: dB(A)

备注:现有工程厂界噪声贡献值取 2024 年 2 月 2 日~2 月 3 日验收监测报告中的最大数值,监测报告编号: 学润(监)[2024]第 01169 号。由于项目东西侧紧邻其他企业厂房,因此,本次评价不对东侧厂界、西侧厂界进行预测。

根据表 4.2-13 预测结果可知,拟建项目在进行降噪措施后,南侧厂界(临茶涪路一侧)噪声昼间、夜间预测值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)4 类标准,北侧厂界噪声昼间、夜间预测值满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类标准。

(2) 声环境保护目标预测

根据现场踏勘,项目厂界外 50m 范围内存在的声环境保护目标为居 民点,声环境保护目标处噪声影响预测结果见表 4.2-14。

茶印	山水	佳苑	友沙
类别	昼间	夜间	备注
南侧厂界贡献值	63.2	53.8	
敏感点贡献值	31.2	21.8	
敏感点背景值	60	52	
敏感点预测值 (贡献值叠加背景值)	60.0	52.0	距离南侧厂界 40m
评价标准值	70	55	
达标情况	达标	达标	

表 4.2-14 声环境保护目标影响预测结果一览表 单位: dB(A)

根据表 4.2-14 对声环境保护目标的噪声影响预测结果可知,拟建项目对居民点的声环境影响能够满足《声环境质量标准》(GB3096-2008) 4a 类标准,对周边声环境影响较小。

从环保角度考虑,建设单位有必要采取有效的措施,尽可能地减小噪

声对周围环境的影响,评价建议采取的噪声污染防治措施如下:

- ①尽量选用低噪声设备、低噪声工艺,并在设备安装中采取减振措施,设备底座设置减震垫等。
 - ②生产设备均安装于厂房内,降低设备的运行噪声。
- ③建立设备定期维护、保养的管理制度,保证设备正常运转,使机械运行始终保持最低噪声级水平。
- ④加强对作业人员的环境宣传和教育,使员工认真落实各项降噪措施,做到文明生产。

4.2.3.4 噪声自行监测要求

根据《排污单位自行监测技术指南 总则》(HJ819-2017)、《排污许可证申请与核发技术规范 工业噪声》(HJ1301-2023)相关要求,拟建项目噪声监测计划详见表 4.2-15。

	监测点位	监测项目	监测频次	执行标准
	北侧、南侧厂 界外 1m			南侧厂界(临茶涪路一侧)执行《工
		等效连续A声		业企业厂界环境噪声排放标准》
		• • • • • • • • • • • • • • • • • • • •	1 次/季度	(GB12348-2008)4 类标准; 北侧厂
		级		界执行《工业企业厂界环境噪声排放
				标准》(GB12348-2008)3 类标准

表 4.2-15 噪声监测计划表

4.2.4 固体废物

4.2.4.1 固体废物产生及处置情况

(1) 固体废物产生情况

拟建项目新增固体废物产生情况详见表 4.2-16。

表 4.2-16 拟建项目新增固体废物产生情况表

固废	固体废物名	产生环节	废物种	本	物理	属性
编号	称	广生环节	类/类别	废物代码	性状	周江
S1	废边角料	热剪切、挤 压、模具碱 煮、中断等	SW17	900-002-S17	固态	一般固废
S2	含切削液的 铝屑	锯切	HW09	900-006-09	固态	危险废物
S3	不合格产品	包装入库	SW17	900-002-S17	固态	一般固废
S4	废包装材料	包装入库	SW17	900-003-S17/ 900-005-S17	固态	一般固废

S5	废零部件		SW17	900-099-S17	固态	一般固废
S6	废矿物油及 废油桶	设备维护、	HW08	900-249-08	液/ 固态	危险废物
S7	含油废棉纱 手套	保养	HW49	900-041-49	固态	危险废物
S8	生活垃圾	办公生活	SW64	900-099-S64	固态	生活垃圾

(2) 产排污核算

拟建项目运营期间新增固体废物主要包括一般工业固体废物、危险废物以及生活垃圾。

1) 一般工业固体废物

拟建项目新增的一般工业固体废物主要包括废边角料、不合格产品、废包装材料、废零部件。

①废边角料 S1

在热剪切、挤压、模具碱煮、中断等过程中废边角料产生量约为 887.2t/a,依托现有工程已建一般工业固体废物暂存点进行暂存,分类收 集后定期外售给物资回收单位。

②不合格产品 S3

包装入库(即检验)过程中会产生不合格产品,产生量约为100t/a,依托现有工程已建一般工业固体废物暂存点进行暂存,分类收集后定期外售给物资回收单位。

③废包装材料 S4

产品包装过程中会产生废包装材料,类比现有工程产生情况,废包装材料产生量约为 0.5t/a,依托现有工程已建一般工业固体废物暂存点进行暂存,分类收集后定期外售给物资回收单位。

④废零部件 S5

维修过程中会更换部分零部件,根据建设单位提供的资料,废零部件产生量约为 0.1t/a,依托现有工程已建一般工业固体废物暂存点进行暂存,分类收集后定期外售给物资回收单位。

2) 危险废物

拟建项目新增危险废物主要包括含切削液的铝屑、废矿物油及废油桶、含油废棉纱手套。

①含切削液的铝屑 S2

定尺锯在使用时,会使用少量的切削液进行润滑保护,在此过程中会产生少量的含切削液的铝屑,产生量约为 0.8t/a,根据《国家危险废物名录》(2025 年版)规定,含切削液的铝屑属于危险废物,危险废物类别为HW09,废物代码为 900-006-09,利用现有工程已建危险废物贮存点暂存,定期交由有危险废物处置资质的单位进行处置。

②废矿物油及废油桶 S6

设备定期维护保养过程中会产生废矿物油及废油桶,产生量约为 0.5t/a,根据《国家危险废物名录》(2025年版)规定,废矿物油及废油桶属于危险废物,危险废物类别为 HW08,废物代码为 900-249-08,利用现有工程已建危险废物贮存点暂存,定期交由有危险废物处置资质的单位进行处置。

③含油废棉纱手套 S7

设备定期维护保养过程中会产生含油废棉纱手套,产生量约为 0.01t/a,根据《国家危险废物名录》(2025年版)规定,含油废棉纱手套属于危险废物,危险废物类别为 HW49,废物代码为 900-041-49,利用现有工程已建危险废物贮存点暂存,定期交由有危险废物处置资质的单位进行处置。

3) 生活垃圾

拟建项目新增劳动定员 10 人,生活垃圾产垃圾系数每人每天产生生活垃圾 0.5kg,则年产生活垃圾 1.5t/a,生活垃圾集中收集后交由环卫部门处理。

拟建项目新增固体废物产生及处置情况见表 4.2-17; 新增危险废物汇总情况见表 4.2-18; 危险废物贮存场所(设施)基本情况见表 4.2-19。

类别	固体废物名称	产生量 (t/a)	处置措施及去向
	废边角料	887.2	外售给物资回收单位
一般工业	不合格产品	100	外售给物资回收单位
固体废物	废包装材料	0.5	外售给物资回收单位
	废零部件	0.1	外售给物资回收单位

表 4.2-17 拟建项目新增固体废物产生及处置情况表

	含切削液的铝屑	0.8	
危险废物	废矿物油及废油桶	0.5	定期交由有危险废物处置资质的
	含油废棉纱手套	0.01	单位进行处置
生活垃圾	生活垃圾	1.5	交由环卫部门处理

运营
期环

表 4.2-18 新增危险废物汇总表

序	固废	危险废物	废物类别 废物代码		产生量	产生工序	形态	主要成	有害成	产废	危险	污染防治措施
号	号 编号 名称		及初矢加	及初代時	(t/a)	及装置	八分心	分	分	周期	特性	
1	S2	含切削液 的铝屑	HW09	900-006-09	0.8	锯切	固态	铝合金、 切削液	切削液	每天	Т	利用现有工程已建危险废
2	S6	废矿物油 及废油桶	HW08	900-249-08	0.5	设备维护、 保养	液态、 固态	油桶、矿物油	矿物油	间断	Т, І	物贮存点暂存,定期交由 有危险废物处置资质的单
3	S7	含油废棉 纱手套	HW49	900-041-49	0.01	设备维护、 保养	固态	棉纱、矿 物油等	矿物油	间断	T/In	位进行处置

表 4.2-19 危险废物贮存场所(设施)基本情况表

序号	贮存场所(设施) 名称	危险废物名称	危险废物类 别	危险废物代码	位置	占地面积	贮存方式	贮存 能力	贮存 周期
1		含切削液的铝屑	HW09	900-006-09	厂区北侧(利用现有		桶装		
2	危险废物贮存点	废矿物油及废油桶	HW08	900-249-08	工程已建危险废物	20m ²	桶装	6t	1a
3		含油废棉纱手套	HW49	900-041-49	贮存点)		桶装		

4.2.4.2 固体废物环境影响分析

拟建项目运营期主要新增固体废物包括一般工业固体废物、危险废物以及生活垃圾。

(1) 一般工业固体废物

拟建项目运营期新增的一般工业固体废物包括废边角料、不合格产品、废包装材料、废零部件,利用现有工程已建一般工业固体废物暂存点(面积约 50m²)进行暂存,位于厂区西侧,分类收集后定期外售给物资回收单位。

(2) 危险废物

根据《国家危险废物名录》(2025 年版)、《危险废物贮存污染控制标准》(GB18597-2023)的相关要求,拟建项目产生的危险废物利用现有工程已建危险废物贮存点(位于厂区北侧,面积约 20m²)暂存,定期交由有危险废物处置资质的单位进行处置。拟建项目建成后,全厂危险废物产生总量为 10.31t/a,危险废物贮存点最大贮存能力约为 6t,危险废物产生量有所增加,建设单位缩短转运周期,可满足全厂危险废物暂存需求。

通过上述方法妥善处置后,拟建项目新增固体废物对周围环境影响较小。

4.2.4.3 环境管理要求

(1) 一般工业固体废物

- ①定期对贮存(处置)场地环境保护图形标志进行检查,发现破损, 应及时更换。
- ②各类一般工业固体废物应分类收集,禁止向生活垃圾收集设施中投放工业固体废物。
- ③根据《一般工业固体废物管理台账制定指南(试行)》(生态环境部公告 2021 年第 82 号),本次评价对项目固体废物管理提出以下要求:
- A、分析一般工业固体废物的产生情况。从原辅材料与产品、生产工 艺等方面分析固体废物的产生情况,确定固体废物的种类,了解并熟悉所 产生固体废物的基本特性。
 - B、明确负责人及相关设施、场地。明确固体废物产生部门、贮存部

- 门、自行利用部门和自行处置部门负责人,为固体废物产生设施、贮存设施、自行利用设施和自行处置设施编码。
- C、确定接受委托的利用处置单位。委托他人利用、处置的,应当按照《中华人民共和国固体废物污染环境防治法》第三十七条要求,选择有资格、有能力的利用处置单位。
- D、产废单位填写台账记录表时,应当根据自身固体废物产生情况,从《一般工业固体废物管理台账制定指南(试行)》附表8中选择对应的固体废物种类和代码,并根据固体废物种类确定固体废物的具体名称。
- E、台账记录表各表单的负责人对记录信息的真实性、完整性和规范性负责。
- F、产废单位应当设立专人负责台账的管理与归档,一般工业固体废物管理台账保存期限不少于5年。

(2) 危险废物

- ①定期对危险废物贮存点标识标牌、贮存危险废物包装容器及贮存设施进行检查,发现破损,应及时采取措施清理更换。
- ②贮存危险废物应根据要求进行分类贮存,且应避免危险废物与不相容的物质或材料接触。
- ③贮存分区内地面、墙面裙脚、堵截泄漏的围堰、接触危险废物的隔板和墙体等应采用坚固的材料建造,表面无裂缝;贮存设施应采取技术和管理措施防止无关人员进入。
- ④应按危险废物类别分别采用符合标准的容器贮存,加上标签,由专 人负责管理。
- ⑤建设单位应当按照《危险废物管理计划和管理台账制定技术导则》 (HJ1259-2022)中的相关要求制定危险废物管理计划和管理台账、危险 废物申报等。
- ⑥在交由有危险废物处置资质单位处置时,应严格按照《危险废物转移管理办法》(部令第23号)填写危险废物转移联单,并存档备查。
- ⑦危险废物转移联单应当根据危险废物管理计划中填报的危险废物 转移等备案信息填写、运行,危险废物电子转移联单数据应当在信息系统

中至少保存十年。

综上所述,拟建项目产生的固体废物去向明确,均得到妥善处置,不 会对环境造成明显不利影响。

4.2.5 地下水、土壤影响分析及其防治措施

4.2.5.1 污染源及污染途径

拟建项目地下水、土壤污染源主要是在生产车间、污水处理站、危险废物贮存点。

污染物类型:泄漏物质主要为矿物油、挤压模具碱煮及清洗废水等,主要污染物为pH、COD、石油类等。

地下水、土壤主要影响途径为:生产车间跑、冒、滴、漏的废矿物油、 废水;污水处理站及危险废物贮存点防渗层破损,废水、危险废物泄漏, 从而对地下水、土壤造成影响。

4.2.5.2 防控措施

根据防渗分区技术方法及拟建项目的工程分析,将生产车间(挤压机等使用矿物油的区域)、模具碱煮及清洗区域、污水处理站(包括废水收集及处理设施)、危险废物贮存点划分为重点区域;其他区域为一般防渗区。

(1) 重点防渗区

重点防渗区域主要包括挤压机等使用矿物油的设备基础、模具碱煮及清洗区域、危险废物贮存点以及废水收集、处理设施。防渗技术要求应等效黏土层防渗层 Mb≥6.0m,渗透系数 K≤10⁻⁷cm/s。危险废物贮存点室内设置有导流沟及集液池,可有效防止液体外溢。

(2) 一般防渗区

防渗技术要求应等效黏土层防渗层 Mb≥1.5m,渗透系数 K≤10⁻⁷cm/s。综上所述,拟建项目对可能产生地下水及土壤影响的各项途径均进行有效预防,在确保各项防渗措施得到落实,并加强维护和厂区环境管理的前提下,不存在地下水、土壤的污染途径,可有效避免污染地下水及土壤,因此,拟建项目不会对地下水及土壤环境产生明显影响,对地下水、土壤环境影响可接受。

4.2.6 环境风险

4.2.6.1 风险源调查

根据建设单位的产品以及原辅料情况,对照《建设项目环境风险评价技术导则》(HJ169-2018)附录 B(重点关注的危险物质及临界量)对项目所涉及的物质进行判定。

拟建项目涉及的危险物质情况见表 4.2-20。

序号 物质名称 最大储存量(t) 存放位置 储存方式 废矿物油 0.4 危险废物贮存点 桶装 1 液氨 1.6 液氨存放区 钢瓶 3 液氨 0.03 管道

表 4.2-20 环境风险物质情况表

备注: 厂区内最大存放量为 4 瓶, 液氨为直接外购的 400kg/罐的高压液氨钢瓶, 厂区液氨存放区最大贮存量为 1.6t, 输送管道内贮存量约为 0.03t。拟建项目依托现有工程设置的液氨存放区,本次仅增加液氨的使用量,厂区液氨贮存能力不变。

4.2.6.2 环境风险潜势初判

根据《建设项目环境风险评价技术导则》(HJ169-2018) 附录 C, 计算 出危险物质数量与临界量比值 Q。危险物质数量与临界量比值 (Q) 的计算公式如下:

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$

式中: q_1 , q_2, q_n ——每种危险物质的最大存在总量, t;

$$Q_1$$
, Q_2, Q_n ——每种危险物质的临界量, t 。

当 O<1 时,该项目环境风险潜势为 I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<10; (2) 10≤Q<100; (3) Q≥100。

拟建项目涉及的危险物质数量与临界量比值结果详见表 4.2-21。

最大存在总量 临界量 该种危险物 序号 危险物质名称 CAS 号 Qn/t 质Q值 qn/t 1 废矿物油 / 0.4 2500 0.00016 2 液氨 7664-41-7 1.63 5 0.326 项目 Q 值 Σ 0.32616

表 4.2-21 项目 Q 值确定表

根据表 4.2-21 计算可知,拟建项目 Q=0.32616<1,项目涉及的危险物质最大贮存量未超过临界量,环境风险潜势为 I,无需设置风险专项评价。

4.2.6.3 可能影响途径

拟建项目环境风险可能影响途径分析见表 4.2-22。

表 4.2-22 项目环境风险识别表

序号	危险单元	风险物质	环境风险类型	环境影响途径
1	危险废物贮存点	废矿物油	泄漏	地表水、地下水
2	液氨存放区	液氨	泄漏、火灾等	大气、地表水、地
3	输送管道	液氨	引发的伴生/次 生污染物排放	下水

拟建项目涉及的环境风险物质为废矿物油及液氨,泄漏后可能会污染大气、地表水、地下水。

4.2.6.3 环境风险防范措施

- ①危险废物贮存点地面采取了重点防渗措施并执行《危险废物贮存污染控制标准》(GB18597-2023)的储存要求,并由专人管理,并设置有警示标志。
- ②危险废物贮存点室内设置有导流沟及集液池,可有效防止泄漏时物质外溢。
- ③液氨存放区设有围堰,液氨储罐周围配有喷淋装置和氨气报警装置、灭火器等设施。
 - ④厂区配备有应急物资。
- ⑤厂区最高处设置有风向标,便于氨泄漏时人员向上风向撤离,设置 有安全疏散指示标志。
- ⑥按要求编制了应急预案(已备案,备案编号为:500102-2023-002-L, 具体见附件),平时定期组织单位人员开展了应急演练并对液氨存放区进 行巡检,加强管理。

现有风险防范措施完善,可依托,拟建项目环境风险可接受。

4.3 "三本帐"核算

拟建项目实施后,其主要污染物"三本帐"核算见表 4.3-1。

表 4.3-1 拟建项目实施后污染物"三本帐"核算表 单位: t/a

米切	污染物	现有工程	拟建项目	"以新带老"	扩建完成后	排放增
类别	行朱彻	排放量	排放量	削减量	总排放量	减量
	颗粒物	3.8239	0.109	0	3.9329	+0.109
	二氧化硫	1.4484	0.077	0	1.5254	+0.077
废气	氮氧化物	5.138	0.717	0	5.855	+0.717
及气	氟化物	0.0098	0	0	0.0098	0
	非甲烷总	0.1277	0.0022	0	0.1409	+
	烃	0.1377	0.0032			0.0032
	COD	6.495	0.054	0	6.549	+0.054
	NH ₃ -N	0.241	0.002	0	0.243	+0.002
废水	石油类	0.015	0.002	0	0.017	+0.002
	氟化物	0.05	0	0	0.05	0
	总镍	0.002	0	0	0.002	0
	一般工业	11001 11	007.0	0	12000.01	.007.0
固体	固体废物	11821.11	987.8	0	12808.91	+987.8
废物	危险废物	9	1.31	0	10.31	+1.31
	生活垃圾	83.75	1.5	0	85.25	+1.5

备注:废水污染物排放量按排入环境的量进行统计;固体废物指产生量。 由于扩建前后,产品生产规模增加,各污染物排放量均有所增加。

五、环境保护措施监督检查清单

上京	批光口 / /-	>二>h. ₩m т=		
内容	排放口(编号、	污染物项	环境保护措施	执行标准
要素	名称)/污染源	T AD ALC	+ 1 1 1 7 10 10 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	加热炉天然气	颗粒物、	车间内以无组织形式排放(直	/
	燃烧废气	SO ₂ , NO _X	排)	
	时效炉天然气	颗粒物、	车间内以无组织形式排放(直	/
	燃烧废气	SO ₂ , NOx	排)	
	焊接烟尘 (模具检修)	颗粒物	依托现有工程,无组织排放	/
	打磨粉尘 (模具检修)	颗粒物	依托现有工程,无组织排放	/
	氮化炉废气 (模具检修)	NH ₃	依托现有工程已建的氮化炉, 废气经水吸收后直接排放	/
大气环境	食堂油烟	油烟、非甲烷总烃、臭气浓度	依托厂区现有食堂,食堂油烟 经油烟净化器处理后,通过1 根专用烟道引至楼顶排放	《餐饮业大气污染 物排放标准》 (DB50/859-2018) 油烟≤1.0mg/m³、非 甲烷总烃≤ 10.0mg/m³、臭气浓 度≤80 (无量纲)
	厂区内无组织 (厂房门窗排 放口)	颗粒物	加强车间通风换气	《工业炉窑大气污 染物排放标准》 (DB50/659-2016) 颗粒物≤5mg/m³
	厂界无组织废 气	颗粒物、 SO ₂ 、NOx	加强车间通风换气	《大气污染物综合 排放标准》 (DB50/418-2016) 颗粒物≤1.0mg/m³、 SO ₂ ≤0.40mg/m³、 NOx≤0.12mg/m³
			生产废水经厂区现有污水处理	
地表水	生产废水	pH、COD、 SS、石油类	站处理达《污水综合排放标准》 (GB8978-1996)三级标准后、 食堂废水经隔油池(依托)隔 油处理后与生活污水一并进入	《污水综合排放标 准》(GB8978-1996) 三级标准: pH: 6~ 9、COD≤500mg/L、
环境	食堂废水及生 活污水	pH、COD、 BOD5、SS、 NH3-N、动 植物油	厂区生化池(依托)处理达《污水综合排放标准》 (GB8978-1996)三级标准后, 经园区污水管网进入龙桥工业 园区污水处理厂进一步处理达标后排入长江	BOD₅≤300mg/L、 SS≤400mg/L、 NH₃-N≤45mg/L、动 植物油≤100mg/L、 石油类≤20mg/L

				《工业企业厂界环 境噪声排放标准》 (GB12348-2008)		
声环境	生产设备	等效连续 A声级	选用低噪声设备;对设备采取 基础减振、隔声等综合降噪措 施	中 3 类标准: 昼间: 65dB(A)、夜间: 55dB(A); 4 类标准: 昼间: 70dB(A)、夜间:		
 电磁辐				55dB(A)		
射	/	/	/	/		
固体废物	(1)一般工业固体废物 利用现有工程已建一般工业固体废物暂存点(位于厂区西侧,面积约50m²)进行暂存,废边角料、不合格产品、废包装材料以及废零部件分类收集暂存后,定期外售给物资回收单位。 (2)危险废物 利用现有工程已建危险废物贮存点(位于厂区北侧,面积约20m²)暂存,含切削液的铝屑、废矿物油及废油桶、含油废棉纱手套分类收集后暂存于危险废物贮存点,定期交由有危险废物处置资质的单位进行处置,并建立危险废物管理台账。 (3)生活垃圾厂区设置有生活垃圾收集桶,生活垃圾收集后交由环卫部门处理。					
地下水污染防治措施	厂区进行分区防渗,将生产车间(挤压机等使用矿物油的区域)、模具碱煮及清洗区域、污水处理站(包括废水收集及处理设施)、危险废物贮存点划分为重点区域;其他区域为一般防渗区。					
生态保 护措施						
环境风险防范措施	并执行《危险废导流沟及集液池 ②依托厂区现有 喷淋装置和氨气 有风向标,便于	物贮存污染抗,可有效防山工程设置的流 报警装置、列 级泄漏时人员	受物贮存点,危险废物贮存点地面空制标准》(GB18597-2023)的储土泄漏时物质外溢。 被氨存放区:液氨存放区设有围堰灭火器等设施;厂区配备有应急物员向上风向撤离,设置有安全疏散只单位人员开展了应急演练并对液	存要求;室内设置有 中,液氨储罐周围配有 日次;厂区最高处设置 日流动,工资,位于		
其他环境管理要求	加强管理。 (1) 环保手续齐全,建立环境管理制度。 (2) 项目竣工后,及时按照建设项目竣工环保验收规范要求开展验收。 (3) 按照排污许可证规定和有关标准规范,依法开展自行监测,并保存原始监测记录。 (4) 加强环保设备的定期维护,确保环保设备稳定正常运行。					

六、结论

重庆南涪铝业有限公司 3100 吨挤压生产线符合相关产业政策、符合环保政
策、符合重庆涪陵工业园区龙桥组团规划环境影响报告书及其审查意见、重庆市
及涪陵区"三线一单"要求。项目采用的污染控制措施可靠,污染防治措施技术
经济可行,能确保各种污染物稳定达标排放,在实施相应的污染防范和减缓措施
后,对环境不会造成明显影响,不会改变区域环境功能。因此,在全面落实本报
告表提出的各项环境保护措施的基础上,切实做到"三同时",并在运营期加强
环境管理的前提下,从环保的角度分析,评价认为项目的建设环境可行。